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Our neighborhood is rated residential, is located in a wilderness rated area and has some agricultural 
parcels in and around River Pines Estates (RPE). We maintain the roads, which are "slip seal," in the 
neighborhood via Road Committee. A number of the agricultural properties do not contribute to the 
maintenance of our roads, yet large semi trucks going to and from these businesses degrade our road's 

infrastructure. 

The Department of Agriculture allowed an agricultural permit to be issued to referenced project even 
though the Department did not agree the property is agricultural in nature. They said to bring up our 
issues to the Planning and Building Department because the project is commercial. 

i chose to live in a rural area to be away from commercial businesses and have enjoyed living the country 
life for over 20 years. I do not want a commercial cannabis business in our neighborhood and the 
Planning and Building Department should deny any permit allowing a commercial cannabis business in 

RPE. 

Reasons to deny proposed project: 

1. RPE is a residential area, not commercial 

2. Increased traffic on roads 

3. Introduces additional and unknown people to area on a seasonal basis 

4. RPS has no security, sheriff or police to make sure RPE residents are safe from unwanted "visitors" to 

the pot farm 

5. Pot farm in our residential neighborhood could lower property value in RPE 

Questions for hearing: Is proposed project 

1. going to maintain the roads they will be using? 

2. going to require their employees be bonded? 

3. providing any type of security for RPE? 

4. using a well or buying potable water? 

Respectfully submitted, 24-0520 Public Comment
PC Rcvd 03-25-24



April Bryant, TTEE 

April Bryant Trust, dated 3/22/2018 

24-0520 Public Comment 
PC Rcvd 03-25-24



Fw: CCUP21-0004/Single Source 

Planning Department <planning@edcgov.us> 
Mon 3/25/2024 1 :26 PM 

To:svgens@gmail.com <svgens@gmail.com> 

Pc o/if6/ ;;o~<./ 
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57 f~ 
Cc:Karen L.Garner<Karen.L.Garner@edcgov.us>;Christopher J. Perry <Christopher.Perry@edcgov.us>;Robert J. Peters 
<Robert.Peters@edcgov.us>;Aaron D. Mount <aaron.mount@edcgov.us>;Ande Flower <Ande.Flower@edcgov.us>;Brendan 
Ferry < brendan.ferry@edcgov.us>;Bret E. Sampson < Bret.Sampson@edcgov.us> ;Kathy Witherow 
<kathy.witherow@edcgov.us>;Kathleen Markham <kathleen.markham@edcgov.us>;Debra R. Ercolini 
<debra.ercolini@edcgov.us>;Patricia M. Soto < Patricia.Soto@edcgov.us>;Aurora M. Osbual <Aurora.Osbual@edcgov.us>; 
Christopher A. Smith <Christopher.Smith@edcgov.us>;David A Livingston <david.livingston@edcgov.us>;Jefferson B. Billingsley 
<Jefferson.Billingsley@edcgov.us>;Adam J. Bane <adam.bane@edcgov.us>;Zachary S. Oates <Zach.Oates@edcgov.us>;Jarren 
A. Brady <Jarren.Brady@edcgov.us>;Renee J. Jensen <ReneeJensen@edcgov.us>;Evan R.Mattes<Evan.Mattes@edcgov.us> 
Bcc:Brandon Reinhardt <Brandon.Reinhardt@edcgov.us>;Lexi Boeger <Lexi.Boeger@edcgov.us>;Andy Nevis 
<Andy.Nevis@edcgov.us > ;Daniel Harkin < Daniel.Harkin@edcgov.us> 

1W 3 attachments (2 MB) 

DFG A Review of the Impacts of Cannabis Cultivation on Fish and Wildlife Resources_minus Baeur.pdf; Journal of Cannabis 
Research.pdf; Letter to EIDoCo Planning Commission.docx; 

Your public comment sent on 3/25/2024 at 12:20 PM has been received for Single Source Solutions 
(Commercial Cannabis Use Permit) that is on the agenda for the Planning Commission's Meeting on 
3/28/2024. 

Thank you. 

County of El Dorado 
Planning and Building Department (Planning Services) 
2850 Fairlane Court 
Placerville, CA 95667 
(530) 621-5355 

·'1, ..,_? to-- Ei Vo·retdo
A Great Place to Live, Work & Play 

From: Vicki Gendreau <svgens@gmail.com> 

Sent: Monday, March 25, 2024 12:20 PM 
To: Planning Department <planning@edcgov.us> 
Subject: CCUP21-0004/Single Source 

Dear Planning Commission, 
Please find our response regarding the proposed commercial pot farm in our residential community 
on D'Agostini Dr. 
Best regards, 
Steve & Vicki Gendreau 

24-0520 Public Comment 
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Steve & Vicki Gendreau 
7093 Bertone Dr 
Somerset, CA 94586 

March 25, 2024 

via email to: planning@edcgov.us 

County of El Dorado, Planning and Building Dept. 
2850 Fair lane Ct 
Placerville, CA 95667 

Esteemed Members of the El Dorado Planning Commission 

Re: CCUP21-0004/Single Source 
Proposed Commercial Pot Farm on D'Agostini Dr, in the Residential Community of River 
Pines Estates (RPE) 

We are not in support of the proposed commercial pot farm in our quiet residential community. Aside 
from the gross failure to honor our CC&R's which do not allow any property owner to use their 
property for commercial purposes, or to permit or cause anything in or on their lot which would be 
noxious, harmful, or unreasonably offensive to other owners, we have the following concerns which 
we would like addressed: 

Environment. Our foremost concerns are about the impact a commercial pot farm will have on our 
freshwater supplies, along with threats to biodiversity, changes in land use, and potentially vast 
emissions of volatile organic compounds, adding to the ever-worsening climate change. 

The M ND states that the pot farm will be using water from a well currently used by the existing 
vineyard that also supports a second vineyard and a large residence. Many sources have verified 
that cannabis uses a significant amount of water, at least twice the amount as grapes use. Where 
is that extra water going to come from in an already water-depleted area trying to recover from 
several years of extreme drought. And what about the surrounding neighbors who depend on 
wells that use that same water table for their everyday needs. 

We therefore request that a study be done by a qualified hydrologist on the effect of the supply 
and quality a/the water table. 

We were surprised to see that only one environmental study had been done, and that it was done 
in the "dead of winter" on 12/31/2023. Mr. Matuzak reported seeing only a few birds. The fact is 
that there are a multitude of other birds, as well as animals, amphibians, reptiles and important 
beneficial insects {bees, etc.) that make our community their homes throughout the year. 

We therefore request that additional environmental studies be done throughout the different 
seasons of the year to correctly reflect these patterns of nature. 

24-0520 Public Comment 
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Sadly, this commercial pot farm will most likely be using pesticides and rodenticides, which would 
ultimately affect resources for the many creatures who depend on our area for food, nesting, and 
raising their offspring. 

Travel. We read in the MND that the average family takes 9 to 10 trips daily. With the price of gas, it's 
hard to imagine anyone in RPE making nine trips daily. The nearest towns of Pleasant Valley and 
Plymouth are close to 25 minutes away on rough roads, and it is easily 40 - 60 minutes to the 
nearest mainstream city (Placerville, Folsom, Jackson). Other than the daily trip to work or school, 
many of the RPE residents plan our outings to visit several places, including getting gas, on our one 
trip to town each week, others of us are retired and may make only one trip a week. 

RPE roads are not county maintained, and we, the people who live here, try to maintain the 
integrity of our roads twice a year. It's enough that the two major wineries in the area are using our 
roads and not contributing to the maintenance of the roads, but to add additional traffic is just not 
acceptable. Not to mention the trash and litter that the winery workers and possibly 9 to 10 
additional pot farm workers will leave the people who live here to clean up. 

Planning Commission Members, you will make a decision based upon what you think is right for the 
County, but we rely on you to protect us and make a decision that is right for the people, and most 
importantly, for the land, our environment, and the creatures who live in this southern most 
residential community of the County. 

Thank you for addressing our concerns, and in closing, we'd like to ask yourselves what each of you 
would do if a commercial pot farm was planning to move into your quiet neighborhood? 

Respectfully, 

Steve & Vicki Gendreau 

Resources for water, air quality, and pesticide use, also attached: 
https:ljnrm.dfg.ca.gov/FileHandler.ashx?DocumentlD=160552&inline 

https:ljjcannabisresearch.biomedcentral.com/articles/10.1186/s42238-021-00090-0 
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Journal of Cannabis 
Research 

REVIEW Open Access 

A narrative review on environmental impacts 
of cannabis cultivation 

Chock for 
updAIM 

Zhonghua Zheng 1, Kelsey Fiddes2 and Liangcheng Yang2' C!!) 

Abstract 

Interest in growing cannabis for medical and recreational purposes is increasing worldwide. This study reviews the 
environmental impacts of cannabis cultivation. Results show that both indoor and outdoor cannabis growing is 
water-intensive. The high water demand leads to water pollution and diversion, which could negatively affect the 
ecosystem. Studies found out that cannabis plants emit a significant amount of biogenic volatile organic compounds, 
which could cause indoor air quality issues. Indoor cannabis cultivation is energy-consuming, mainly due to heating, 
ventilation, air conditioning, and lighting. Energy consumption leads to greenhouse gas emissions. Cannabis cultiva
tion could directly contribute to soil erosion. Meanwhile, cannabis plants have the ability to absorb and store heavy 
metals. It is envisioned that technologies such as precision irrigation could reduce water use, and application of tools 
such as life cycle analysis would advance understanding of the environmental impacts of cannabis cultivation. 

Keywords: Cannabis cultivation, Water demand, BVOCs emission, Carbon footprint, Soil erosion 

Background 
TheCannabis plant has been cultivated throughout the 
world since ancient civilizations and used for thousands 
of years for both medicinal and recreational applications. 
Cannabis contains a psychoactive compound called tet
rahydrocannabinols (THC) that creates a psychogenic 
effect. It can be consumed through the respiratory tract 
and digestive tract through smoking and oral ingesting, 
respectively. In contrast, cannabidiol (CBD), another 
component derived from cannabis, is a non-psychoactive 
cannabinoid that has gained popularity for its medicinal 
values and as a supplement. In the USA, an estimated 
"30 million Americans use marijuana (cannabis) at least 
occasionally, and 20 million use it at least once per 
month" (Osbeck and Bromberg 2017). Despite being used 
widely, the lack of science-based information due to the 
legal status of cannabis in the last centuries worldwide 
(e.g., in the USA) has prevented research. 

*Correspondence: lyang@ilstu.edu 
2 Department of Health Sciences Environmental Health and Sustainability 
Program, Jllinois State University, Norma!, IL 6 l 790, USA 
Full list of author information is available atthe end of t he article 

Cultivation methods have an unavoidable influence 
on the environment in different degrees. Outdoor cul
tivation is the traditional and original method of canna
bis cultivation. Although with low costs, it is subject to 
weather and natural resources. Improper soil and water 
resources management and pest control may induce crit
ical environmental issues. On the contrary, indoor cul
tivation (including greenhouse cultivation) enables full 
control over all aspects of the plants, such as light and 
temperature, but is constrained by higher costs, energy 
demand, and associated environmental implications. 
Reducing the global environmental impact of agriculture 
is vital to maintain environmental sustainability. How
ever, there is a lack of systemic principles towards the 
sustainable farming of cannabis because its environmen
tal impacts remain unclear. In the wake of the unprece
dented legalization of cannabis, there is a pressing need 
for a complete review of its environmental assessment. 

In this paper, we conduct a narrative review of the avail
able literature. We strive to build a better understanding 
of the environmental impacts induced by cannabis cul
tivation. This improved understanding can benefit com
munities, including policymakers, cannabis industry 

BMC ©The Author(s) 2021 . Open Access This article is l!censed under a Creat;ve Commons Attribution 4.0 International license, which 
permits use, sharing, adaptatim. distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, proviae a link to the Creative Commons licence, and 1nd1cate 1f changes were made. The images or 
other third pariy material in this art;cle are included in the article's Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use. you will need to obtain permission directly from the copyright holder. To view a copy of this 
l:cence, visit http//creat1vecommonsorg/l:censes/by/4.0/. 
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stakeholders, agricultural engineers, ecologists, and envi
ronmental scientists. This review covers the environmental 
effects on water, air, and soil. Energy consumption and car
bon footprint are included as well. Possible research direc
tions are also put forward. 

Methods and materials 
The literature search for this narrative review paper was 
conducted several times in 2020 and 2021. We searched 
combinations of keywords such as "cannabis cultivation;• 
"marijuana cultivation," "cannabis water demand," "can
nabis emissions;' "cannabis energy demand'; and "envi
ronmental impacts:' Papers, reports, and government 
documents from 1973 to 2021 from Science Direct and 
Google Scholar databases have been searched in English. 
We screened over 250 literatures and discarded irrelevant 
literature for further analysis. A total of 63 literatures were 
cited in the review. 

Water demand analysis 
To unify the water demand calculations from different data 
sources, we conducted the following unit conversions: 

1 inch of water= 27,154 gallons of water per acre (1) 

1 acre= 43,560 ft2 (2) 

Similarly, units reported for water demand such as 
"mm/total growing period" were converted to "gallon/ 
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ft2/day''. For example, the water need of cotton is 700 mm 
per total growing period. The water demand was calcu
lated to: 

700 mm= 27.56 inches= 748,346 gallon per acre (3) 

Finally, the minimal daily water demand for cotton 
(shown in Table 1) was calculated using the maximal 
growing days (195 days): 

748,346 gallon per acre acre gallons 
-------X -----=- = 0.09 -=--- (4) 

195 days 43,560 ft2 ft2 x days 

Water demand and pollution 
Water demand 
Cannabis is a water- and nutrient-intensive crop (Carah 
et al. 2015). Table 1 shows that the water demand for 
cannabis growing far exceeds the water needs of many 
commodity crops. For example, cannabis in a grow
ing season needs twice as much as the water required 
by maize, soybean, and wheat. On average, a canna
bis plant is estimated to consume 22.7 l (6 gallons) of 
water per day during the growing season, which typi
cally ranges from June to October for an approximate 
total of 150 days (Butsic and Brenner 2016). As a com
parison, the mean water usage for the wine grapes, the 
other major irrigated crop in the same region, was esti
mated as 12.64 I of water per day (Bauer et al. 2015). 
Although the average daily water use varies from site 

Table 1 Water demand comparison between Cannabis and commodity crops 

Plants Total growing period Water demand per Daily water demand Ref 
(days) season (gal/an ,r-2 day- 1) 

{million gallons acre- 1) 

Cannabis: outdoor 150 1.57 • 0.24 (HGA, 2010) 
Cannabis: outdoor August n.a 0.22 (Wilson et al., 2019) 
Cannabis: outdoor September n.a 0.1 7 (Wilson et al., 2019) 
Cannabis: indoor August n.a 0.18 (Wilson et al., 2019) 
Cannabis: indoor September n.a 0.22 (Wilson et al., 2019) 
Cotton 180-195 0.75-1.39b 0.09-0.15 {Brouwer and Heibloem, 1986) 
Cotton I I 0.14-0.1 7 (Hussain et al., 2020) 
Maize 130-150 0.53--0.86b 0.07--0.13 (Brouwer and Heibloem, 1986) 
Corn I I 0.22 (peak) (Rogers et al. 2017) 
Soybean 135-150 0.48--0.7Sb 0.07--0.13 (Brouwer and Heibloem, 1986) 
Soybean I I 0.22 (peak) (Rogers et al. 201 7) 
Wheat 120-150 0.48--0.69° 0.07-0.19 (Brouwer and Heibloem, 1986) 
Wheat I I 0.19 {peak) {Rogers et al. 201 7) 
Rice 90-150 0.48-0.75b 0.09-0.18 (Brouwer and Heibloem, 1986) 
Rice I I 0.11 - 0.15 (lntaboot, 2017) 

Nore': The water demand of cannabis is calculated based on 22.7 I (6 gallons) of water per day during the growing season and 200 plants per S,000 sq. ft (HGA. 2010) 

Noti!': The water demand of crops is based on crop water need from Table 14 in Brouwer Heibloem (Brouwer and Heibloem, 1986). We convert the unit from mm to 
million gallon acre- 1 according to the rule of unit conversion where 1 acre inch is equivalent to 27,154.29 gallon 
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to site, depending on many factors such as the geo
graphic characters, soil properties, weather, and culti
vation types, it is an agreed-upon truth that cannabis is 
a high-use water plant. A survey conducted by Wilson 
et al. (2019) reports the water usage of outdoor canna
bis cultivation in California is 5.5 gallons per day per 
plant {equivalent to 0.22 gallon ft-2 day-1

) in August 
and 5.1 gallons per day per plant (equivalent to 0.17 
gallon ft-2 day-1

) in September {Wilson et al. 2019). 
The indoor cultivation water consumptions are 2.5 and 
2.8 gallons per day per plant in August and September. 
However, the application rates (0.18 gallon fr-2 day-I 
in August and 0.22 gallon ft-2 day-I in September) are 
very close to outdoor cultivation (Wilson et al. 2019). 
In California, irrigated agriculture is regarded as the 
single largest water consumer, accounting for 70-80% 
of stored surface water and pumping vast volumes of 
groundwater (Moyle 2002; Bauer et al. 2015). The great 
water demand induced by agriculture, amid population 
growth and climate change, is most likely to exacerbate 
water scarcity in the foreseeable future (Bauer et al. 
2015). Notably, the predicted decrease in water avail
ability downscales in California may adversely affect 
the value of farmland (Schlenker et al. 2007) and pose 
a severe challenge to the cannabis industry. As a result, 
the immense amount of water necessary to keep canna
bis plants alive and healthy will continue to burden our 
environment. 

The high water demand presses the need for water 
sources. Water diversion is a common practice, which 
removes or transfers the water from one watershed to 
another to meet irrigation requirements. While the water 
diversion alleviates the water shortage problem for can
nabis cultivation, it also presents new challenges. A study 
conducted by Bauer et al. quantitatively revealed that sur
face water diversions for irrigation led to reduced flows 
and dewatered streams (Bauer et al. 2015). Four north
western California watersheds were investigated in this 
study since they are remote, primarily forested, sparsely 
populated. The results show that the annual seven-day 
low flow was reduced by up to 23% in the least impacted 
watersheds of this study, and water demands for canna
bis cultivation in three watersheds exceed streamflow 
during the low-flow period. More recently, Dillis et al. 
identified well water {58.2%), surface water diversions 
(21.6%), and spring diversions (16.2%), are the most com
monly extracted water source for cannabis cultivation in 
the North Coast region of California (Dillis et al. 2019). 
The distributing percentages, however, vary among the 
counties. For example, the growers in Humboldt County 
relied more on surface water and spring diversions (57%) 
than the wells (40.9%), while another study conducted by 
Wilson et al. showed that groundwater (wells or springs) 

Page 3 of 10 

was the primary water source for irrigation, followed by 
municipal water, rainwater, and surface water (Wilson 
et al. 2019). 

Water pol/ut;on 
Cannabis cultivation, especially illegal cultivation, may 
deteriorate water quality. Recent studies have suggested 
the considerable demands of nutrition such as nitro
gen (Saloner and Bernstein 2020, 2021), phosphorous 
(Shiponi and Bernstein 2021), and potassium (Saloner 
et al. 2019) for cannabis growth. However, there is lim
ited data on the impact of cannabis cultivation on water 
quality worldwide or even nationwide. Here we focus on 
a survey conducted by Wilson et al. (2019) for CA, USA. 
Based on the survey, more than 30 different soil amend
ments and foliar nutrient sprays were used to maintain 
nutrition and fertility (Wilson et al. 2019). The applied 
pesticides (including herbicides, insecticides, fungicides, 
nematodes, and rodenticides), due to routine pest and 
disease controls, make their way into the water without 
restriction and therefore posing significant risks to the 
water environment (Gabriel et al. 2013). The transport 
and fate of the applied fertilizers and pesticides vary. 
For example, nitrogen and pesticides can get into run
off or leach into groundwater due to rainfall or excessive 
irrigation (Trautmann et al. 2012). If the polluted water 
continues to be used, it would add contaminants into 
soil, surface water, and groundwater. These chemicals 
may threaten humans and crops through the food chain 
(Pimentel and Edwards 1982). The other major irrigated 
crops can also be significantly impacted since the place
ment of crops is subject to the environmental safety of 
runoff, groundwater contamination, and the poisoning 
of nearby bodies of water. However, without the ability 
to sample water quality and assess the extent to which 
chemical inputs are entering adjacent water bodies, the 
ability to link cultivation practices to water pollution is 
greatly limited (Gianotti et al. 2017). Besides, few envi
ronmental clean-up and remediation efforts in the pol
luted watersheds are accessible due to a lack of resources 
and staff in state or federal agencies. 

Water ecosystem 
Water diversion and water pollution affect the water 
ecosystem. The high demand for water due to cannabis 
cultivation in watersheds affects wildlife such as fish and 
amphibians in a significant way since cannabis cultiva
tion is widespread within the boundaries of the water
sheds, where the downstream water houses populations 
of sensitive aquatic species. The diminished flows may be 
notably detrimental to salmonid fishes since they need 
clean, cold water and suitable flow regimes (Bauer et al. 
2015). As the reduced streamflow has a strong positive 

24-0520 Public Comment 
PC Rcvd 03-25-24



Zheng et al. J Cannabis Res (2021) 3:35 

correlation with increased water temperature, indirectly 
resulting in reduced growth rates in salmonids, lowered 
dissolved oxygen, increased predation risk, and increased 
susceptibility to disease (Marine and Cech 2004). It has 
been reported that there are 80%-116% increases in 
cannabis cultivation sites near high-quality habitats for 
threatened and endangered salmonid fish species (Butsic 
et al. 2018). Besides, the threat of water diversions and 
altered stream flows to amphibians cannot be neglected. 
The desiccation-intolerant species, such as southern tor
rent salamander (Rhyacotriton variegatus) and coastal 
tailed frog (Ascaphus truei), are vulnerable to headwater 
stream diversions or dewatering (Bauer et al. 2015). The 
headwater stream-dwelling amphibians also exhibit high 
sensitivity to water temperature changes (Bury 2008). It 
is vital to get all the growers on the same page regard
ing water resources because flow modification is one of 
the greatest threats to aquatic biodiversity. The cannabis 
industry is becoming a major abuser concerning water 
diversions. Studies show that the second-generation anti
coagulant rodenticides (ARs) affect many predators in 
both rural and urban settings (Gabriel et al. 2013, 2012; 
Elliott et al. 2014). Necropsy revealed that a male fisher 
had died of acute AR poisoning in April 2009, most likely 
due to the source of numerous illegal cannabis cultiva
tion sites currently found on public lands throughout the 
western USA (Thompson et al. 2014). A study examining 
the effects of Ars on the Pacific fisher reports that four 
out of fifty-eight deceased fishers examined were killed 
by "lethal toxicosis, indicated by AR exposure;' 

Outdoor and indoor air quality 
Outdoor air quality 
Little attention has been devoted so far to study the 
impact of cannabis cultivation on outdoor air quality. 
The emission of volatile organic compounds (VOCs) 
attracts special attention because of the vital role played 
by VOCs in ozone and particulate matter formation, 
as well as VOC's health impact (D.R. et al. 2001; Jacob 
1999). Amongst the VOCs, the biogenic volatile organic 
compounds (BVOCs) (Atkinson and Arey 2003), mainly 
emitted from vegetation, account for approximately 89% 
of the total atmospheric VOCs (Goldstein and Galbally 
2007). Previous studies have identified cannabis plant tis
sues contain high concentrations of many BVOCs such as 
monoterpenes (C6H16), terpenoid compounds (e.g., euca
lyptol; C10H180), sesquiterpenes (C15H24), and methanol. 
Hood et al. investigated that the monoterpenes a:-pinene, 
j>-pinene, ~-myrcene, and d-limonene accounted for over 
85% of the detected VOCs emitted, with acetone and 
methanol contributing a further 10% (Hood et al. 1973; 
Rice and Koziel 2015; Ross and ElSohly 1996). However, 
limited systematic studies characterized and accurately 
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quantified volatile em1ss10ns during the growing and 
budding process (Wang et al. 2019b). 

To determine the BVOCs emission rates, Wang et al. 
employed an enclosure chamber and live Cannabis spp. 
plants during a 90-day growing period considering four 
different strains of Cannabis spp. including Critical Mass, 
Lemon Wheel, Elephant Purple, and Rockstar Kush 
(Wang et al. 2019b). They found the percentages of indi
vidual BVOCs emissions were dominated by j>-myrcene 
(18-60%), eucalyptol (17-38%), and d-limonene (3-10%) 
for all strains during peak growth (Table 2). The terpene 
emission capacity was determined, ranging from 4.9 
to 8.7 µg-C per g dry biomass per hour. The estimation 
with µg-C per g dry biomass per hour for Denver would 
result in more than double the existing rate of BVOCs 
emissions to 520 metric ton year-1, leading to 2100 met
ric ton year-1 of ozone, and 131 metric ton year-1 of PM 
(particular matter). However, a high emission can be 
expected since the better growing conditions contribute 
to rapid growth and higher biomass yields. 

A recent study conducted by Wang et al. was the first 
attempt at developing an emission inventory for can
nabis (Wang et al., 2019a). This study compiled a bot
tom-up emission inventory of BVOCs from cannabis 
cultivation facilities (CCFs) in Colorado using the best 
available information. Scenarios analysis shows that the 
highest emissions of terpenes occur in Denver County, 
with rates ranging from 36 to 362 t year-1, contributing 
to more than half of the emissions across Colorado. With 
the emission inventory, the air quality simulations using 
the Comprehensive Air Quality Model with extensions 
(CAMx) show that increments in terpene concentrations 
could results in an increase of up to 0.34 ppb in hourly 

Table 2 Composition of BVOCs 

BVOCs 30-day(%) 46-day(%) 

~-myrcene 26.6-42.6 18.3-59.4 

Eucalyptol 18.5-32.8 16.8-37.6 

d-limonene 4.4-17.2 3.0-1 0.0 

p-cymene 2.3-12.8 0.6-4.6 

y-terpinene 2.0-9.7 2.8-14.0 

13-pinene 0.4-6.9 1.3-3.S 

(Z)-~•ocimene 1.3-5.9 0.0 

Sabinene 0.0-5.0 0.2-10.9 

Camphene 0.0-4.4 0.0-1.0 

a-pinene 0.8-4.3 2.7-3.6 

Thujene 0.9-3.1 1.2- 3.4 

a-terpinene 0.0-2.0 0.5-5.4 

Note: BVOCs biogenic volatile organic compounds 

Data adapted from Wang, C. T., Wiedinmyer, C., Ashworth, K., Harley, P. C., Ortega, 
J., Vizuete, W. (2019b). Leaf enclosure measurements for determining volatile 
organic compound emission capacity from Cannabis spp. Atmos. Environ., 199, 
80-87. (Wang eta I., 2019b) 
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ozone concentrations during the morning and 0.67 ppb 
at night. Given that Denver county is currently classi
fied as "moderate" non-attainment of the ozone standard 
(USEPA 2020), the air quality control of the CCF opera
tion is essential. 

In addition to BVOC emissions, like every crop cultiva
tion in water-sensitive zones, the fertilization of canna
bis causes deterioration in air quality. As fertilization is 
one of the most critical factors for cannabis cultivation, 
the introduction of excessive nitrogen into the environ
ment without regulation can lead to adverse multi-scale 
impacts (Balasubramanian et al. 2017; Galloway et al. 
2003). Ammonia in the chemical nitrogen fertilizer vol
atilized from cropland to the atmosphere forms PM via 
the reaction with acidic compounds in the atmosphere. 
Besides, the wet and dry deposition of reactive nitrogen 
consisting of ammonia continuously deteriorates the eco
logical environment. Both soil acidification and water 
eutrophication risks could significantly increase because 
of the nitrogen cascade (Galloway et al. 2003; Galloway 
et al. 2008). 

Indoor air quality 
Although cannabis can be grown outdoors in many 
regions of the world, sizeable commercial cultivation can 
also occur indoors or in greenhouses. Ambient measure
ments collected inside growing operations pre-legaliza
tion have found concentrations as high as 50- 100 ppbv 
of terpenes including a-pinene, ~-pinene, ~-myrcene, 
and d-limonene for fewer than 100 plants in the canna
bis cultivation facility (Martyny et al. 2013; Atkinson and 
Arey 2003; Wang et al. 2019a). The study conducted by 
Spokane Regional Clean Air Agency (SRCAA) measured 
indoor VOCs in seven flowering rooms and two dry bud 
rooms across four different CCFs, reporting the aver
age terpene concentration was 361 ppb (27-1676 ppb) 
(Southwellb et al. 2017). 

Samburova et al. analyzed the BVOCs emissions from 
four indoor-growing Cannabis facilities in California 
and Nevada (Samburova et al. 2019). They reported 
the indoor concentrations of measured BVOCs could 

Table 3 Indoor BVOCs concentrations 

BVOCs Sites 

a-pinene, 13-myrcene. 13-pinene, Growing room 
and limonene 

Terpenes 

Total BVOCs 

Total BVOCs 

Total BVOCs 

Flowering room 

Growing room 

Curing room 

Purging room 

BVOCs Biogenic volatile organic compounds 

Unitinppbv 

50-100 

30-1600 

n.a 

n.a 

n.a 
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vary among the facilities, ranging from 112 µg m-3 to 
5502 µg m-3 (Table 3), for a total measured BVOCs 
of 744 mg day-1 planc1. The BVOCs characteriza
tion partially agrees with the measurements shown 
by Wang et al. where ~-myrcene is one of the domi
nated BVOCs emitted by Cannabis, but eucalyptol was 
not a dominating terpene in this study (Wang et al. 
2019b). The obtained emission rates ranged between 
O to 518.25 mg day-1 plant-1. The largest emission 
contributors were ~-pinene (518.25 mg day-1 planc1, 
70% of the total BVOCs) a-pinene (142.92 mg day-1 

planc1, 19% of the total BVOCs), and D-limonene 
(30.86 mg day-1 planr-1, 4% of the total BVOCs). Sil
vey (2019) characterized the overall VOC total terpene 
mass concentration using sorbent tube sampling and 
found a higher range between 1.5 mg m-3 (office) to 
34 mg m-3 (trimming room) (Silvey 2019). 

The indoor cannabis (marijuana) grows operations 
(known as "IMGO") also pose a risk of potential health 
hazards such as mold exposure, pesticide, and chemical 
exposure (Martyny et al. 2013). For example, cannabis 
cultivations typically require a temperature between 
21 and 32 °C, with a relative humidity between 50 and 
70% (Koch et al. 2010), while the ventilation rate is 
often suppressed to limit odor emanating, especially 
for the illegal cultivation. John and Miller suggested 
that the houses built after 1980 in Canada are at high 
risk of moisture-related damage if used as IMGO, and 
increased moisture levels of the IMGO are associated 
with elevated mold spore levels {Johnson and Miller 
2012). The reports by IOM (IOM 2004) and WHO 
(World Health Organization) showed that the presence 
of mold in damp indoor environments is correlated 
with upper respiratory tract symptoms, respiratory 
infections, wheeze, cough, current asthma, asthma 
symptoms in sensitized individuals, hypersensitivity 
pneumonitis, and dyspnea (WHO 2009). Cuypers et al. 
conducted a study in Europe, showing that pesticide 
use in Belgian indoor cannabis cultivation is a common 
practice, putting both the growers and intervention 
staff at considerable risk (Cuypers et al. 2017). They 

Unit in ug m-3 Ref 

n.a {Martyny et al., 2013; Wang et al., 2019a) 

n.a (Southwellb et al., 2017; Wang et al., 2019a) 

112- 5502 (Samburova et al., 2019) 

863-1055 (Cuypers et al., 201 7) 

1005 (Trautmann et al., 201 2) 
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found 19 pesticides in 64.3% of 72 cannabis plant sam
ples and 65.2% of 46 carbon filter doth samples, includ
ing o-phenylphenol, bifenazate, and cypermethrin. 

Energy demands and carbon footprint 
Indoor cultivation energy demands and impacts 
As one of the most energy-intensive industries in the 
USA (Warren 2015), cannabis cultivation results in up to 
$6B in energy costs annually, accounting for at least 1 % of 
the nation's electricity (Mills 2012). The cannabis electric
ity consumption increases to 3% in California (Warren 
2015). In Denver, the average electricity use from canna
bis cultivation and associated infused product manufac
turing increased by 36% annually between 2012 and 2016 
(DPHE 2018). As cannabis becomes legalized throughout 
the country, energy consumption will continue to grow in 
the foreseeable future. 

The energy use of indoor cannabis cultivation arises 
from a range of equipment, falling into two major catego
ries: lighting and precise microclimate control. For the 
cannabis plants to thrive and therefore make the growers 
a profit, several energy-intensive tools are regularly uti
lized. The energy demand for indoor cannabis cultivation 
was reported to be 6074 kWh kg-yield-1 (Mills 2012). 
Figure 1 shows the end-use electricity consumption 
according to a study performed by the Northwest Power 
and Conservation Council (NPCC 2014). Amongst them, 
lighting, HVAC (heating, ventilation, and air condition
ing), and dehumidification account for 89% of the total 
end-use electricity consumption. 

High-intensity lighting is the main contributor to elec
tricity for indoor production facilities. Sweet pointed 
out that lighting alone can account for up to 86% of the 
total electricity usage (Sweet 2016). It has been reported 
that the intensity of the indoor cannabis lamps (25 klux 
for leaf phase, and 100 klux for flowering (Mills 2012)) 
approximates that of hospital operating room lamps, 
which is up to 500 times greater than a standard reading 
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light (Warren 2015). lndoor cultivation facilities typically 
utilize a combination of high-pressure sodium (HPS), 
ceramic metal halide (CMH), fluorescent, and/or light
emitting diode (LED) lamps. In addition to the lamp 
type, lighting system design is also critical to maximizing 
energy efficiency in the cultivation facilities, and time of 
use also plays a crucial role. 

HVAC Dehumidification system ensures frequent air 
exchanges, ventilation, temperature, and humidity con
trol day and night. This system can account for more than 
half of the total energy consumption in an indoor culti
vation facility (Mills 2012). Besides, water and energy are 
inextricably linked, given water and wastewater utilities 
contribute to 5% of overall USA electricity consumption 
(Pimentel and Edwards 1982). The grow systems (includ
ing automation and sensors), irrigation (including ferti
gation and pumps), and CO2 injection also consume an 
amount of electricity. 

Energy production, especially fossil fuel use, is account
able for the environmental impact. Table 4 shows that 
coal and natural gas make up almost three-quarters of the 
power supply for Colorado customers in the USA. Con
sidering the environmental impacts of different energy 
sources, the extensive usages of fossil fuels (coal, natural 
gas, and oil) causes serious environmental damage and 

Table 4 Power supply mix for Colorado customers 

Energy sources Total 
generation 
mix(%) 

Coal 44 

Natural gas 28 

Wind 23 

Solar 3 

Hydroelectric 2 

Others (including biomass, oil and nuclear generation) O 

Data adapted from Dever Publich Health Environment. 2018. Cannabis 
Environmental Best Management Practices Guide. (DPHE, 2018) 

CO2 11\Jtttlon 2% Drylng/CUrinc, 1% 
WaterHandllng,3°/4 / 

Space Heating (assumillc 
electric heat), 5% 

Lighting. 38% 

Fig. 1 End-use electricity consumption 

HVAC& 
Dehumidification, SI% 
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pose effects on (1) humans, (2) animals, (3) farm pro
duce, plants, and forests, (4) aquatic ecosystems, and (5) 
buildings and structures (Barbir et al. 1990). 

Carbon footprint 
The term carbon footprint refers to "a measure of the 
exclusive total amount of carbon dioxide emissions that 
is directly and indirectly caused by an activity or is accu
mulated over the life stages of a product" (Wiedmann 
and Minx 2008). In the context of cannabis cultivation, 
a carbon footprint can be defined as the total amount of 
greenhouse gases (GHGs) emitted during the production 
of cannabis. Denver Department of Public Health Envi
ronment broke the GHG inventory down into the three 
primary scopes: (1) an organization's direct GHG emis
sions produced on-site; (2) an organization's off-site car
bon emissions, or indirect emissions; (3) all other indirect 
carbon emissions associated with the operation of a busi
ness (DPHE 2018). However, a relatively small body oflit
erature pays particular attention to the carbon footprint 
calculation. Mills estimates that producing one kilogram 
of processed cannabis indoors leads to 4600 kg of CO2 
emissions to the atmosphere, equivalent to one passenger 
vehicle driven for one year or 11,414 miles driven by an 
average passenger vehicle (Mills 2012). Amongst them, 
the emissions factor (kg CO2 emissions per kg yield) of 
lighting is 1520 (33%), followed by ventilation and dehu
midify (1231, 27%), and air conditioning (855, 19%). On 
the other hand, outdoor cultivation can alleviate the 
energy use for lighting and precise microclimate con
trol but requires other facilities and techniques such as 
water pumping. Carbon footprint analysis is the first step 
towards the carbon reduction strategies, which contrib
utes to the reduction of the environmental impacts of the 
cannabis industry. Future studies are foreseen to improve 
the understanding of the carbon footprint of cannabis 
cultivation both indoors and outdoors. 

Soil erosion and pollution 
Soil erosion 
Soil erosion is a natural process that occurs when there is 
a loss or removal of the top layer of soil due to rain, wind, 
deforestation, or any other human activities. It increases 
fine-sediment loading into streams and threatens rare 
and endangered species (Carah et al. 2015). Soil ero
sion can happen slowly due to wind or quickly due to the 
heavy rainfall event. Land terracing, road construction, 
and forest clearing make their ways to remove native veg
etation and to induce soil erosion (Carah et al. 2015). Bar
ringer (Barringer 2013) and O'Hare et al. suggested that 
cannabis cultivation directly contributes to soil erosion 
(O'Hare et al. 2013). The slope is a useful proxy for ero
sion potential since soil on steep slopes tends to erosion 
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when cleared or cultivated (Butsic et al. 2018). Butsic and 
Brenner conducted a systematic, spatially explicit survey 
for the Humboldt County, California, involving digitiz
ing 4,428 grow sites in 60 watersheds (Butsic and Bren
ner 2016). About 22% of the clustered cannabis on steep 
slopes indicates a risk of erosion. Many studies also sug
gest that cannabis cultivation can result in deforestation 
and forest fragmentation (Wang et al. 2017), which exac
erbate soil erosion. Though greenhouse prevents soil ero
sion, they are surrounded by large clearings accumulated 
during construction with exposed soils subject to erosion 
(Bauer et al. 2015). 

Phytoremediation potential 
Cannabis has gradually garnered attention as a "biore
mediation crop" because of its strong ability to absorb
ing and storing heavy metals (McPartland and McKernan 
2017). It can remove heavy metal substances from sub
strate soils and keep these in its tissues by means of its 
bio-accumulative capacity (Dryburgh et al. 2018). Usu
ally, it takes up high levels of heavy metals from the soil 
or growing medium via its roots and potentially depos
its into its flowers (Seltenrich 2019). Tainted fertilizer 
uptake from the soil is often a source of heavy metals 
contamination such as arsenic, cadmium, lead, and mer
cury. Singani and Ahmadi reported that Cannabis sativa 
could absorb lead and cadmium from soils amended 
with contaminated cow and poultry manures (Singani 
and Ahmadi 2012). Though limited studies discussed the 
effectiveness of cannabis for heavy metals removal, many 
studies have addressed the uptake of heavy metals by 
industrial hemp (Campbell et al. 2002; Linger et al. 2002). 
It indicates that the cannabis plant is qualified as a phy
toremediation of contaminated soils. 

Conclusions and envisions 
A summary of the environmental impacts of canna
bis cultivation is shown in Fig. 2. Water demand and 
usage will continue to be a major concern. Illegal can
nabis cultivation and improper operation may raise 
water pollution issues. Studies on cannabis' physiologi
cal properties will guide to determine water demand. 
Besides, identifying and applying best management 
practices, such as precision irrigation and enhanced cli
mate control, will be critical to minimize the environ
mental impacts on water. Energy consumptions mainly 
come from the equipment operation of the indoor cul
tivations such as lighting, HVAC, and dehumidifica
tion. Carbon footprint can be calculated both indoors 
and outdoors based on energy consumption. Quanti
tatively accounting for the energy assumption across 
operations at scales is the key to better estimating the 
carbon footprint. Techniques such as life cycle energy 
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Indoor Outdoor 
BVOCs emission 
744 mg day1 plant1 

t 12-5502 ug m·3 
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Water demand 
0.22 gallon ft·2day-1 

22. 7 L day-1 plant1 

..&.._ / CO2 emission 
~ ~ \.Ai _ L..4_600_kg.c...k-=-g....:...-y1_·e1_d·_

1 
_, 

Energy demand 
6,074 kWh kg-yie]d·1 W ~ - Water demand 

l l "- 0.24 gallon tt2 day1 
• HVAC (50%) 
• Lighting (33%) 

Water 
diversion, pollution Heavy metal uptake 

Fig, 2 Summary of cannabis environmental impacts 

assessment and life cycle carbon emissions assessment 
would offer informative guidance to reduce the envi
ronmental impacts. Few studies have focused on the 
impacts of cannabis cultivation on air quality. Evidence 
has emerged that BVOCs and fertilization may contrib
ute to outdoor air quality issues. Indoor air pollutants, 
i.e., BVOCs emission, mold, pesticide, and chemicals 
pose a risk of health hazards. Field or chamber stud
ies on determining the species and emission rate of 
BVOCs, trace gases, and particles from the plant, plant 
detritus, and soils are important. Much work will be 
needed to include this information in the emission 
inventory for air quality modeling. Investigation con
cerning the contribution of those species to regional, 
even global air quality, is useful for policymakers and 
the public. Besides, a better understanding of indoor 
pollutant concentration and emission ensures the safety 
of indoor operation. The environmental impact of can
nabis cultivation on soil quality has two sides, and it 
needs to be treated dialectically. On one side, cannabis 
cultivation directly contributes to soil erosion. On the 
other side, cannabis has a strong ability to absorb and 
store heavy metals in the soil. Further studies on the 
soil mechanics and dynamics of heavy metals in plant
soil interactions are needed. 
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1. Introduction 

"A Review of the Potential Impacts of Cannabis Cultivation on Fish and Wildlife 
Resources" provides a synthesis of the available scientific literature on potential impacts 
of cannabis cultivation on fish, wildlife, and associated ecosystems. As defined by the 
California Department of Food and Agriculture, cannabis (marijuana) cultivation refers to 
" ... any activity involving the planting, growing, harvesting, drying, curing, grading, or 
trimming of cannabis." The review focuses on outdoor cultivation of cannabis, including 
greenhouse cultivation. 

"The combination of limited water resources, a water-hungry crop, and cultivation in 
sensitive ecosystems means that marijuana cultivation can have environmental impacts 
that are disproportionately large given the area under production" (Carah et al. 2015). 

2. Pollutants 

Cannabis cultivation sites often use substantial quantities of pesticides, including 
insecticides and rodenticides, to discourage wildlife foraging on cannabis plants and to 
decrease damage to irrigation lines (NDIC 2007). 

2.1 Pesticides (insecticides, herbicides, fungicides) 

This section will focus on the effects of pesticides including insecticides, herbicides, and 
fungicides; effects of rodenticides are addressed in section 2.2. 

2.1.1 Direct Effects 

The direct effects of pesticides on wildlife include acute poisoning, immunotoxicity, 
endocrine disruption, reproductive failure, altered morphology and growth rates, and 
changes in behavior. 

Wildlife can be poisoned by pesticides after exposure to a toxic dose through ingestion, 
inhalation, or dermal contact (Pimentel 2005, Berny 2007). In addition to killing 
arthropod pests, insecticides are toxic to native insect pollinators, other beneficial 
arthropods (e.g., spiders, predatory mites, etc.), and beneficial decomposers such as 
earthworms, fungi, bacteria, and protozoa (Pimentel 2005). Herbicides have also been 
shown to cause mortality in beneficial arthropods (Freemark and Boutin 1995). 

Pesticide poisoning has also been documented in numerous vertebrae taxa, primarily 
birds (see Appendix A; Nettles 1976, Henny et al. 1987, Littrell and Hunter 1988, 
Augspurger et al. 1996, Mineau et al. 1999, Fleischli et al. 2004, Pimentel 2005). For 
example, granivorous birds can die after eating seeds coated in insecticides 
(Fairbrother 1996, Mineau and Palmer 2013). Mineau and Whiteside (2013) suggested 
that pesticide use was the most important indicator of grassland bird declines in the 
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U.S. when they found that the best predictors of such declines were lethal pesticide risk 
and insecticide use, not agriculture intensification. Population declines have also been 
demonstrated in herbivorous birds due to changes in plant species abundance and 
composition as a result of herbicide use (Sotherton et al. 1988). Pesticide use has also 
been shown to decrease species diversity, including loss of sensitive passerine and 
raptor species (Clark et al. 1986, Smutz 1987, Warner 1994 ). Additionally, pesticides 
can cause embryotoxicity to eggs of waterfowl {Hoffman and Albers 1984 ). Other taxa 
including fish (Pimentel 2005), amphibians (Relyea and Diecks 2008, Egea-Serrano et 
al. 2012, Bruhl et al. 2013), and reptiles (Mingo et al. 2016) also have documented 
casualties of pesticide poisoning. Furthermore, pesticide toxicity is increased when 
combined with environmental stressors {e.g., predators), as has been demonstrated in 
amphibians (Relyea 2003). 

The immune system of wildlife species can be compromised by chronic exposure to low 
doses of pesticides {Li and Kawada 2006, Zabrodskii et al. 2012). Exposure to 
pesticides can lower the immune function of anurans leaving them susceptible to death 
from parasitic infections and pathogens (Christin et al. 2003, Rohr et al. 2008). For 
example, wood frogs (Uthobates sy/vaticus) exposed to pesticides are more susceptible 
to trematode infections (Kiesecker 2002). Additionally, pesticide exposure may 
decrease an animal's ability to recover from physical injuries (Zabrodskii et al. 2002). 

Disruption of the endocrine system is another common consequence of pesticide 
exposure. In birds, such exposure can cause alterations in the thyroid gland that 
negatively impacts thyroid homeostasis and thus metabolism (Pandey and Mohanty 
2015). Aquatic mammals experience endocrine disruption when pesticides used in 
cultivation run-off into aquatic systems (Ross 2000). Pesticide run-off can also be 
problematic for other aquatic species. Male frogs exposed to pesticides have lower 
testosterone levels which can result in hermaphroditic changes (Hayes 2013). Frogs 
also experience inhibited growth of the larynx (Hayes 2013), which likely has 
consequences for mating success if they are unable to participate in mating calls. In 
fish, pesticides can inhibit important hormones causing delays in growth (Baldwin et al. 
2009). 

Exposure to pesticides may also result in reproductive failure for many wildlife species. 
In birds, exposure has been shown to reduce egg production leading to reduced clutch 
sizes (Grue et al. 1997, Pimentel 2005, Berny 2007). Pesticides can also cause reduced 
litter sizes in mammals (Grue et al. 1997, Pimentel 2005), and mammalian fertility may 
also be compromised when pesticides alter ovarian development and function (Tiemann 
2008). Similarly, pesticides can lead to chemical castration in frogs (Hayes 2013). 

Another direct effect of pesticides on wildlife is their ability to alter morphology and 
growth rates of certain species; these effects have primarily been documented in 
amphibians (Relyea 2012). For example, pesticides have been shown to cause limb 
deformities in wood frogs (Kiesecker 2002). They also can result in a reduction in 
growth and development leading to death in leopard frogs (Lithobates pipiens), a 
species of special concern in California (Relyea and Diecks 2008). 
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Pesticides can also cause alterations in wildlife behavior. Arthropods exhibit altered 
search and attack behaviors after exposure to pesticides (Pimentel 2005). In mammals, 
pesticides have been shown to decrease coordination and motor skills and slow 
response rates to noise (Wolansky and Harrill 2008). Exposure has resulted in 
decreased foraging time in birds (Fairbrother 1996) and change in diet of small 
mammals (Johnson 1964, Fagerstone et al. 1977). Pesticides also decrease the ability 
of birds and mammals to thermoregulate (Grue et al. 1997). When fish are exposed to 
pesticide run-off, they develop swimming abnormalities making them more susceptible 
to predation (Renick et al. 2015). 

2.1.2 Indirect Effects 

Pesticides can indirectly impact wildlife through reduction of food resources and 
refuges, starvation due to decreased prey availability, hypothermia, and secondary 
poisoning. 

Pesticides can decrease habitat availability for wildlife through the elimination of food 
resources (e.g., plants) as well as refuge sites when plant abundance and diversity is 
decreased (Pimentel 2005). Small mammals experience decreased survival as a result 
of diet shifts, greater foraging dispersal, and limited availability of cover (Keith et al. 
1959, Tietjen et al. 1967, Johnson and Hansen 1969, Hull, Jr. 1971, Spencer and 
Barrett 1980). Southern red-backed vole (Myodes gapperi) abundance, for example, 
decreases as primary food sources are reduced and cover is eliminated by herbicides 
(D'Anieri et al. 1987). Reduced shrub cover from herbicides has also been shown to 
decrease species diversity of small mammals (Lillywhite 1977). Moreover, small 
mammals that experience diet shifts have been shown to have lower reproductive 
success (Spencer and Barrett 1980). Diet shifts and increased foraging dispersal 
resulting from herbicide use have also been implicated in decreased chick survival of 
ground-feeding gamebirds (Green 1984, Rands 1986, Warner 1994). 

When prey availability is decreased from pesticide use (e.g., arthropod reductions from 
insecticide exposure), it may contribute to starvation of wildlife species. For example, 
reduced insect prey populations such as mosquitoes and beetles have been linked to 
declines in insectivorous bird populations, as insects are vital to birds during the 
breeding season {Hallmann et al. 2014). Starvation as a result of pesticide use has also 
been demonstrated in fish (Pimentel 2005), game birds (Pimentel 2005, Berny 2007), 
and mammals (Grue et al. 1997). 

Sublethal levels of pesticide exposure can cause short-term hypothermia in birds and 
mammals (Grue et al. 1991, Gordon 1994 ). Mallard ducklings (Anas platyrhynchos) 
exposed to low levels of the insecticide carbofuran experienced hypothermia and 
increased mortality at temperatures as high as 10° C (50° F) (Martin and Solomon 
1991 ). In mammals, the LD50 (dose at which 50% of test subjects died) dose of 
pesticides was significantly reduced when temperatures were both higher and lower 
than average; this suggests that animals were not effectively thermoregulating when 
exposed to pesticides (Ahdaya et al. 1976). 
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Lastly, secondary poisoning either through groundwater contamination and run-off or by 
feeding on exposed animals is a common consequence of pesticide use (Pimentel 
2005). There are numerous examples of secondary poisoning of predators and 
scavengers that fed on incapacitated or dead animals. Gamebirds that fed on insects 
(that fed on plants treated with herbicides) had decreased chick survival (Berny 2007), 
and laughing gull (Leucophaeus atricilla) adults and chicks have experienced secondary 
poisoning from insecticides (White et al. 1979). Raptors are also common victims of 
secondary poisonings. Mendelssohn and Paz (1977) reported a mass mortality of 
raptors that fed on poisoned voles and birds. Mortality due to secondary poisoning has 
also been documented in red-shouldered hawks (Buteo lineatus; Balcomb 1983), barn 
owls (Tyto alba; Hill and Mendenhall 1980), and bald eagles (Ha/iaeetus /eucocephalus; 
Elliott et al. 1996). 

2.2 Rodenticides 

Anticoagulant rodenticides (ARs) are toxic pesticides used to decrease the impacts of 
herbivores (primarily small mammals) on cannabis plants (NDIC 2007). They work by 
inhibiting blood from clotting and coagulating, ultimately leading to death (Gabriel et al. 
2015). 

2.2.1 Direct Effects 

The direct effects of AR exposure on wildlife are acute poisoning and immunotoxicity. 
AR use has resulted in the poisoning of numerous non-target species (Eason and Spurr 
1995, Erickson and Urban 2004, Brakes and Smith 2005). A likely reason for this is that 
many manufactures of ARs use "flavorizers" to make them more palatable, including 
sugar, bacon, cheese, peanut butter, and apple, which makes them attractive to a 
variety of species (Gabriel et al. 2012). Direct mortality from consumption of ARs has 
been documented in birds and small mammals (Sanchez-Barbuda et al. 2012). 

Exposure to ARs may also compromise the immune system of non-target species 
making them vulnerable to pathogens and pesticides. Riley (2007) found that AR 
exposure predisposed wild felids (bobcats (Lynx rufus) and mountain lions (Puma 
conco/or)) to notoedric mange. Furthermore, voles that were exposed to ARs exhibited 
higher prevalence of the bacteria that causes tularemia, a zoonotic disease (Vidal et al. 
2009). 

2.2.2 Indirect Effects 

The indirect effects of ARs on wildlife include starvation due to decreased prey 
availability, secondary poisoning, reduction in clotting mechanisms, and hypothermia. 

Similarly to other pesticides, AR exposure may result in predator starvation as prey 
populations have been shown to be affected by rodenticide use (Wengert 2015). 
Secondary poisoning from ARs is also common; as the rodenticide accumulates in the 
prey species, they are easily captured by predators in their weakened state (Berny et al. 
1997, Berny 2007). Approximately 70% of animals sampled by CDFW test positive for 
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at least one AR compound (Daniels 2013); they have been found in a variety of taxa 
including mammals (Littrell and Hunter 1988, Alterio et al. 1997, Stone et al. 1999, 
Hosea 2000, Fournier-Chambrillon et al. 2004, Riley et al. 2007, McMillin et al. 2008, 
Proulx and Mackenzie 2012), corvids (Howald et al. 1999, Stone et al. 1999), raptors 
(Mendenhall and Pank 1980, Hegdal and Colvin 1988, Stone et al. 1999, 2003, Hosea 
2000, Franklin et al. 2018, Gabriel et al. 2018), and turkeys (Hosea 2000) (see 
Appendix B for complete list). Additionally, Burns-Edel (2016) documented secondary 
poisoning of herbivores through feeding on vegetation which had absorbed rodenticide 
compounds. 

One particular concern from AR use is their impact on rare carnivores of conservation 
concern. Several studies have found that ARs are a cause of mortality for Pacific fishers 
(Pekania pennant,'), a candidate for listing under the ESA and CESA as well as a 
species of special concern in California (Gabriel et al. 2012, 2015, Thompson et al. 
2014). Thompson et al. (2014) found that survival of female fishers was linked to the 
number of cannabis cultivation sites within their home ranges, and therefore, cultivation 
sites that utilize ARs may present a similar risk to other carnivores of concern in 
California including Sierra Nevada red fox (Vulpes vulpes necator), Humboldt (coastal} 
marten (Martes caurina humboldtensis), wolverine (Gulo gulo), gray wolf (Canis lupus), 
as well as raptors such as northern spotted owl (Strix occidentalis caurina), California 
spotted owl (S. occidentalis occidentalis), and great gray owls (S. nebulosa; Gabriel et 
al. 2012). 

Sub-lethal exposure to ARs may also endanger wildlife by decreasing the ability of 
animals to clot properly (Valchev et al. 2008). Erickson and Urban (2004) found 
numerous accounts of predators, particularly raptors, with relatively low concentrations 
of ARs in their system dying from excessive bleeding as a result of minor wounds from 
their prey. Examples of this phenomenon have also been documented in screech owls 
(Otus asio; Rattner et al. 2012), barn owls (Webster 2009), and least weasels (Mustela 
niva/is; Townsend et al. 1984). Additionally, similarly to other pesticides, sub-lethal 
exposure to ARs may cause short-term hypothermia in birds and mammals 
compromising their ability to thermoregulate (Jaques 1959, Grue et al. 1991, Gordon 
1994). 

2.3 Fertilizers and Imported Soils 

Cultivation of cannabis requires a nitrogen-rich soil environment (O'Hare et al. 2013), 
and thus, many cultivators use fertilizers and imported soils to increase the nitrogen 
content of the local soils. 

Fertilizers can have a variety of negative impacts on ecosystems. They can decrease 
species diversity and abundance (Kleijn and Snoeijing 1997), and also decrease activity 
of aquatic species, including frog tadpoles (Xu and Oldham 1997). Nutrient enrichment 
will often increase the abundance of pests and pathogens, including those that impact 
wildlife (Matson et al. 1997, Johnson et al. 2010). For example, fertilizer inputs are often 
correlated with increases in the occurrence, severity, and distribution of infectious 
diseases (Johnson et al. 2010). Also, many outdoor cannabis grows include imported 
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soils that may contain invasive plant or animal species that can harm native biodiversity 
(Butsic and Brenner 2016). 

Excess nutrients from fertilizers that wash into watersheds can also have negative 
consequences for wildlife. They can cause nutrient imbalances in the watersheds 
(Mallery 2010) and, through pollution of the watershed, can kill fish and other wildlife 
(NDIC 2007). Fertilizers often cause algae outbreaks in water systems (Mallery 2010), 
which, when they begin to decay, can deplete the water of oxygen, suffocating fish and 
other aquatic life (Bland 2014 }. Algae outbreaks in wetlands have also been shown to 
increase the abundance of parasites, such as trematodes (Ribeiroia ondatrae) that 
cause limb deformities in amphibians (Johnson et al. 2010). Additionally, fertilizers can 
enter and contaminate groundwater as well (NDIC 2007). 

3. Water Impacts 

According to Dudgeon et al. (2006), four of the five greatest threats to freshwater 
biodiversity today are flow modification, water pollution, habitat degradation, and 
species invasions. All four of these threats are common consequences of cannabis 
cultivation. On the west coast, 60% of amphibians, 16% of reptiles, 34% of birds, and 
12% of mammals are classified as riparian obligates (Kelsey and West 1998). 

3.1 Water Diversion 

The primary method by which cannabis cultivation may impact wildlife is through water 
diversions. California has a Mediterranean climate in which most precipitation occurs 
during the winter months. Thus, during the growing season for cannabis (May
September), there is very little precipitation. As each cannabis plant requires about 22.7 
L (6 gal) of water per day, growers must acquire water through alternate means, most 
commonly through irrigation by diverting springs and headwater streams. 
Consequences of water diversion include changes in flow regimes, fish passage 
barriers, loss of wildlife habitat, changes in water properties, rerouting of streams, and 
dewatered streams. 

3.1.1 Changes in Flow Regimes 

Reduced instream flows, prolonged low flows, and loss of seasonal flow peaks can 
have a number of impacts on wildlife, and changes in flow rates are likely to become 
even more pronounced as the climate changes (Deitch et al. 2018). High flows remove 
and transport fine sediment downstream (Poff et al. 1997); without these flows, streams 
may become graded or buried, decreasing available habitat for aquatic species. 
Reduction in flow can also cause channels to become disconnected from floodplains 
resulting in decreased productivity; floodplains are important nursery grounds for some 
fish species, and they transfer organic matter and organisms into the main channel (Poff 
et al. 1997). When fish lose access to backwater wetlands, they can experience 
reduced reproduction and recruitment (Junk et al. 1989, Sparks 1995). These 
decreases in habitat availability can increase both intra and interspecific competition as 
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well as likelihood of predation (CDFG 2004 ). Changes in flow rates can also increase 
the prevalence of invasive species including plants (Horton 1977, Friedman et al. 1998) 
and fish (Gehrke et al. 1995). 

Decreased flows can also increase mortality and negatively impact abundance and 
diversity of a variety of species. Salmonids, for example, require suitable flow regimes 
(Moyle 2002). Water diversions have been shown to increase mortality of both juvenile 
and adult coho salmon (Oncorhynchus kisutch; CDFG 2004, CDFW 2015), and 
Almodovar and Nicola (1999) found that reduced flows can lead to decreased density 
and biomass of brown trout (Sa/mo trutta). Flow rates can be particularly important for 
survival of salmon ids that live in intermittent streams (Obedzinski et al. 2018). Low flows 
can result in the loss of sensitive fish species, such as fluvial specialists, leading to 
decreased diversity (Gehrke et al. 1995, Travnichek et al. 1995, Humphries et al. 2002, 
Irwin and Freeman 2002, Anderson et al. 2006, Freeman and Marcinek 2006). Reduced 
flows can also lead to stagnant water conditions, a situation that allows the growth of 
harmful cyanobacteria resulting in mortality of salmonids and other aquatic animals 
(Power et al. 2015) 

Amphibians can also be sensitive to decreased flows; plethodontid salamanders are 
intolerant to desiccation and thus vulnerable to headwater stream diversions (Ray 
1958). Kupferberg et al. (2012) reported that low flows were strongly correlated with 
early life stage mortality and decreased adult densities of foothill yellow-legged frogs 
(Rana boy/ii) and California red-legged frogs (Rana draytonil), both species of special 
concern in California. Plant cover and diversity can also be decreased by reduced flows 
(Busch and Smith 1995, Stromberg et al. 1996), likely as a result of physiological stress 
leading to reduced growth rates and recruitment, morphological changes, and mortality 
(Reily and Johnson 1982, Perkins et al. 1984, Fenner et al. 1985, Kondolf and Curry 
1986, Rood and Mahoney 1990). Wash-out and stranding of fish and other aquatic 
species can also be a consequence of reduced flows (Cushman 1985). 

Fish use stream flows (high and low flows) as cues for certain life cycle transitions, and 
therefore, prolonged low flows can disrupt natural cues and result in changes in timing 
of life cycle events (Poff et al. 1997). Spawning and egg hatching can be disrupted by 
sustained low flows (Montgomery et al. 1983, Nresje et al. 1995, Fausch and Bestgen 
1997), and migration can be delayed (Jonsson 1991; CDFG 2004}. 

Reduced seasonal flows can also decrease food supply for aquatic species (CDFG 
2004). McKay and King (2006) reported decreased diversity of macroinvertebrates in 
response to low flows. Such changes can result in a substantial alteration of the aquatic 
food webs (Power 1992, Wootton et al. 1996). Decreases in prey availability (e.g., 
macroinvertebrates) can significantly decrease growth rates of salmonids (Harvey et al. 
2006). 

3.1.2 Changes in Water Properties 
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Water diversions can alter dissolved oxygen levels, nutrient contents, and pH as well as 
increase water temperatures (O'Hare et al. 2013). Reduced flow rates are correlated 
with increases in water temperatures as the volume of water in streams decreases. This 
presents threats for salmonids as increased temperatures have been shown to reduce 
growth rates, increase predation risk, and increase susceptibility to disease (Moore and 
Townsend 1998, Marine and Cech, Jr. 2004). Amphibians that live in headwater 
streams are also sensitive to changes in water temperature including the southern 
torrent salamander (Rhyacotriton variegatus) a species of special concern in California 
(Welsh and Lind 1996, Bury 2008). When water temperature increases, it holds less 
dissolved oxygen, which can be problematic for aquatic animals that are reliant on the 
oxygen. For example, reductions in dissolved oxygen can decrease survival of juvenile 
salmonids (Selong et al. 2001, Moyle 2002, Martins et al. 2011 ). Additionally, warmer 
water has a lower pH, and the increased acidity of the water may also have negative 
consequences for aquatic organisms. 

3.1.3 Dewatered Streams 

In addition to reduced flows, water diversion can also be responsible for dewatering 
streams completely. A study by Deitch et al. (2009) found that in watersheds in Sonoma 
County, CA, demand of registered water diversions was greater than stream flows 
during certain parts of the year. Similarly, Carah et al. (2015) found that estimated water 
demand for cannabis cultivated along the Eel River was ten times higher than could be 
sustained by the watershed. 

Streams that dry up may be used by a variety of wildlife including aquatics but also 
numerous non-aquatic species as well. Some salmonids, such as cutthroat trout 
(Oncorhynchus clarkii) and juvenile coho salmon, are known to use small streams that 
would be at risk of being dewatered by diversions (Richardson et al. 2005). Amphibians 
such as the California giant salamander (Dicamptodon ensatus) and southern torrent 
salamander are often dependent on small streams, particularly during summer months 
(Johnston and Frid 2002, Richardson et al. 2005). Also, small streams may provide 
areas free from predators for Pacific tailed frogs (Ascaphus truei; Dupuis and Steventon 
1999, Sheridan and Olson 2003). Reptiles including turtles and snakes are also known 
to use small streams (Meyer et al. 2007), and dippers (Cine/us mexicanus) are one of a 
few bird species known to live in small streams (Richardson et al. 2005). 

There are also a variety of species that, while not dependent on streams, use them 
regularly. Many birds use streams for resources including food, water, and habitat as 
well as for movement including flycatchers, woodpeckers, jays, warblers, and 
hummingbirds (Murray and Stauffer 1995, Lock and Naiman 1998, Meyer et al. 2007). 
Marbled murrelets require access to streams near their nest sites in forests to float 
fledglings to coastal areas (Sealy 1972). Small mammals like Pacific water shrews 
(Sorex bendiril) also use small streams (Gomez and Anthony 1998), and cervids 
including mule deer (Odocoileus hemionus) and elk (Cervus elaphus) often use 
streams, particularly in summer months, but also intermittently during winter as well 
(Ager et al. 2003, D'Eon and Serrouya 2005). Streams are also an essential component 
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of fisher habitat, particularly in regards to rest sites; these sites are especially important 
to fishers in many areas of California that experience hot, dry conditions in the 
summer-including in the Sierras (Zielinski et al. 2004). Bats, such as the California 
myotis (Myotis californicus) and Townsend's big-eared bat (Corynorhinus townsendii), 
commonly use streams for both traveling and foraging for insects (Seidman and Zabel 
2001, Salvarina 2016). 

3.1.4 Other Impacts 

Water diversions can be barriers to fish passage if they are improperly designed. 
Additionally, diversions can result in rerouting of streams and channelization, which 
reduces habitat complexity, can cause terrestrialization of the flora, and reduce species 
evenness (Deiller et al. 2001 ). In certain circumstances, groundwater pumping and 
wells can lead to diversion of surface water and streamflow depletion (Barlow and 
Leake 2012). 

3.2 Dams and Stream Crossings 

Construction of dams and stream crossings used for cannabis cultivation can also have 
negative impacts on ecosystems. These constructions can cause downstream channel 
erosion and tributary head-cutting, reduced magnitude and frequency of high flows (see 
section 3.1.1 for impacts of prolonged low flows), channel narrowing, and reduced 
formation of secondary channels and oxbows (Poff et al. 1997, Asarian and Walker 
2016). Additionally, dams and stream crossings can degrade water quality and 
associated wildlife habitats (Santucci, Jr. et al. 2005). Streams with such constructions 
can have reduced abundance of anurans due to decreased availability of breeding 
habitat (Eskew et al. 2012). Breeding populations of foothill yellow-legged frogs, for 
example, are five times smaller in rivers with dams (Kupferberg et al. 2012). Stream 
crossings may also act as barriers to salmonids, particularly during migration (Furniss et 
al. 1991, Rieman et al. 1997). For example, trout biomass has been shown to be 
negatively correlated to the number of road crossings on a stream (Eaglin and Hubert 
1993). 

3.3 Delivery of Pollutants 

Cultivation of cannabis can also result in delivery of sediment, nutrients, petroleum 
products, and pesticides into streams, degrading the water quality and increasing 
turbidity (Reid and Dunne 1984, David A. Alvarez et al. 2008, Carah et al. 2015). Run
off from pesticides and fertilizers has been shown to have a number of negative 
consequences for aquatic life including external lesions, intersex in fish, and mortality 
(Alvarez et al. 2008b). Sediment that washes into streams can smother gravel beds 
where salmonids spawn. Moreover, sedimentation can impair growth and survival of 
juvenile salmonids (Suttle et al. 2004, NDIC 2007). Sediment in streams can also make 
the water cloudy which decreases the ability of organisms to photosynthesize (Mallery 
2010). Vegetation cleared to provide room for cannabis plants is often discarded into 
stream beds where it can cause barriers to hydrologic flows (Mallery 2010). Amphibians 
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that reside in streams have also been shown to be sensitive to sedimentation and 
vegetation debris (Welsh and Ollivier 1998, Welsh and Hodgson 2008). 

4. Terrestrial Impacts 

4.1 Site Development 

Even before cultivation begins, development of a cultivation site can have substantial 
impacts on wildlife. The impacts from site development come from activities that include 
road construction, fencing, construction of ponds and artificial water sources, 
greenhouse construction, vegetation clearing, and forest conversion. These activities 
cause habitat fragmentation that can impact wildlife movement and eliminate corridors. 

Often, cannabis sites require the construction of new roads to access cultivation areas. 
Wildlife mortality can occur as a result of road construction (Trombulak and Frissell 
2000), and there is a great deal of research showing that roads can increase the spread 
of invasive species (Brothers and Spingarn 1992, Greenberg et al. 1997, Gelbard and 
Belnap 2003, Ansong and Pickering 2013). Additionally, roads can cause soil erosion 
and surface run-off that can transfer sediment into streams (see section 3.3 for impacts 
of stream sedimentation) (Beschta 1978, Seyedbagheri 1996, Richardson et al. 2001). 
Vegetation clearing for road construction can also increase the amount of light that 
penetrates the forest floor, which may result in changes in species composition 
(Trombulak and Frissell 2000). Fencing erected around cultivation sites during site 
construction can also be a hazard to wildlife causing entanglement and mortality (van 
der Ree 1999, Stuart et al. 2001 ). 

Because of the large water needs of cannabis plants, cultivation sites may construct 
ponds or other artificial water sources to ensure reliable access to water during the 
growing season (Bauss 2017). If these ponds are not constructed with proper 
engineering, they can pose a threat to water quality through delivery of sediment to 
nearby streams. They also may result in substantial grading and fill in the area. Such 
water constructions have also been shown to be breeding habitat for invasive species 
such as the American bullfrog (Lithobates catesbianus; Kiesecker et al. 2001, Fuller et 
al. 2011 ), which prey on native anurans of special concern including northern red
legged frogs and foothill yellow-legged frogs (Moyle 1973, Kiesecker and Blaustein 
1997, 1998, Kupferberg 1997). Also, the presence of artificial water sources can 
increase the spread of invasive Argentine ants (Linepithema humile) which displace 
native invertebrates (Human and Gordon 1997, Holway et al. 2002). 

Some cultivation sites include the construction of greenhouses (Bauss 2017). These 
greenhouses may require fuel clearance (under fire codes); these areas often become 
degraded and are prone to establishment by invasive species. Greenhouses are often 
constructed in 100-year floodplains that require grading and fill; they frequently have 
concrete floors, which create a permanent construction footprint that cannot be readily 
converted back to floodplain (Poff et al. 1997). Wang et al. (2017) found that 
development in such areas can disconnect rivers from their natural floodplains, as well 
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as displace, fragment, and degrade essential riparian habitat. Furthermore, 
development in floodplains can reduce the benefits of natural flooding regimes including 
deposition of river silt on valley floor soils and recharging of wetlands. Additional 
changes such as alterations in channel structure and elimination of backwaters that 
result in higher velocity flows may negatively impact salmonids which require low flow 
refugia (Moyle 2002). 

Development of a cultivation site can often include clearing of existing vegetation which 
can have numerous impacts on the local ecosystem (NDIC 2007, Mallery 2010, 
Milestone et al. 2011, Gabriel et al. 2012). Vegetation removal may result in the loss of 
special status plant species and the loss of habitat that supports pollinators and birds, 
particularly habitats necessary during the breeding season. Clearing may also cause 
fragmentation and loss of sensitive habitats and create edge effects that permeate far 
beyond the cultivation site (Harris 1988, Murcia 1995). Recent research suggests that 
cannabis cultivation sites are more likely to be clumped in space, further increasing the 
effects of fragmentation from vegetation clearing (Butsic et al. 2017).The activities 
associated with clearing may also disturb associated soil seed banks that sustain local 
plant populations. Removal of vegetation has also been shown to make communities 
vulnerable to colonization by invasive plant species and to spread the pathogen 
responsible for Sudden Oak Death syndrome (Phytophor ramorum; Mallery 2010). 
Additionally, the abundance of dried vegetation remaining after removals may increase 
risk for fires. 

Forest conversion may also be a result of cannabis site development (Burns-Edel 2016, 
Wang et al. 2017). Forest conversion can lead to loss of nutrient-rich topsoils, disrupted 
nutrient cycling, and increased erosion (NDIC 2007, Mallery 2010). It may also result in 
increased exposure of species to predation risk and climate stress. Wang et al. (2017) 
found that cannabis cultivation sites cause both forest loss and conversion of large 
habitat patches to small, fragmented patches with greater edge and less interior core 
areas. They found that the per-unit-area effects of cannabis cultivation were similar or 
even greater than the effects of timber harvest (Wang et al. 2017). Additionally, areas 
that have been previously harvested for timber are more likely to be cultivation sites, 
which could lead to further conversion and degradation of these areas (Butsic and 
Brenner 2016) 

4.2 Site Use and Maintenance 

The use and maintenance of cannabis cultivation sites can have a number of impacts 
on wildlife. The presence of trash and other wastes can be detrimental if consumed by 
wildlife, and, if the sites are located near streams, they may become pollutants (NDIC 
2007, SWB 2013). Also, use of roads, noise from the cultivation site, and the presence 
of artificial lighting may all have effects on wildlife. 

4.2.1 Road Use 
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Roads and their associated vehicle traffic can have a number of environmental impacts 
including alteration of the physical and chemical environments, wildlife mortality, altered 
abundances and diversity of wildlife, and modification of animal behavior. 

Road presence and use can alter the physical and chemical environment of the 
ecosystem in ways that can impact wildlife. Road use results in soil compaction and 
decreased moisture content under the road, even when the road is not frequently used 
(Vora 1988, Helvey and Kochenderfer 1990). Temperatures are increased on road 
surfaces which creates a heat island that may attract animals; for example, birds and 
snakes congregate on roads which increases their risk of mortality (Whitford 1985). 
Dust is dispersed from traffic which, when deposited on plants, can hinder physiological 
process including photosynthesis, respiration, and transpiration as well as cause 
physical injury to the plants (Farmer 1993). Auerbach et al. (1997) found that dust 
mobilization can decrease species richness and alter plant community structure. Road 
traffic can also supply fine sediments and contaminants to aquatic systems, which 
decreases the clarity (Gjessing et al. 1984, Reid and Dunne 1984); ultimately, this can 
negatively impact productivity as well as survival and growth of fishes (Newcombe and 
Jensen 1996). Additionally, roads can disrupt surface flow of water, redirecting it to the 
roadway (Wemple et al. 1996). This redirection can then result in changes in both timing 
and the direction of the runoff (King and Tennyson 1984), the effects of which are most 
evident in smaller streams, such as those commonly near cannabis sites (Wemple et al. 
1996). Road diversions of groundwater may also result in high amounts of runoff on 
hillslopes that can trigger erosion (Seyedbagheri 1996, Wemple et al. 1996, Richardson 
et al. 2001) which can negatively impact fish and other aquatic organisms downstream 
for long periods of time (Hicks et al. 1991 ). Road use may alter the chemical 
environment through heavy metal contamination which can accumulate in the tissues of 
plants and animals (Birdsall et al. 1986, Grue et al. 1986). 

Traffic on roads can also result in the mortality of wildlife as well as alter the abundance 
and diversity of species (Trombulak and Frissell 2000). Morality from roads has been 
documented in raptors (Loos and Kerlinger 1993, Varland et al. 1993, Newton et al. 
1997), granivorous birds (Dhindsa et al. 1988), snakes (Rosen and Lowe 1994), 
amphibians (van Gelder 1973), and mammals (Bashore et al. 1985, Fuller 1989, Bjurlin 
and Cypher 2003). Furthermore, road presence can also decrease species abundance 
and diversity. Findlay and Houlahan (1997), for example, found that herptile (reptiles 
and amphibians) diversity in wetlands declined relative to the density of roads. Even 
fully aquatic organisms are affected; two studies have reported that the abundance of 
bull trout, an endangered species in California, was negatively related to road density 
(Rieman et al. 1997, Baxter et al. 1999). 

The presence of roads may also cause changes in the behavior of animals. Road 
presence has been shown to shift home ranges of a variety of mammals including bears 
(Ursus spp.; Mclellan and Shackleton 1988, Brody and Pelton 1989), elk and mule deer 
(Rost and Bailey 1979, Grover and Thompson 1986), wolves (Thurber et al. 1994, 
Newcombe and Jensen 1996), and mountain lions (Van Dyke et al. 1986). Roads may 
also cause alterations in movement at smaller scales as well; a variety of both small and 
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large vertebrates modify their movements in relation to roads (Oxley et al. 197 4, Bruns 
1977, Swihart and Slade 1984, Van Dyke et al. 1986, Brody and Pelton 1989, Merriam 
et al. 1989). Roads have also been reported to do decrease the reproductive success of 
some bird species including bald eagles (Anthony and Isaacs 1989) and sandhill cranes 
(Grus canadensis; Norling et al. 1992), both fully protected species in California. The 
impacts of roads on wildlife behavior appears to be independent of how frequently they 
are used. MacArthur et al. (1979) found the energy expenditure, as well as heart and 
metabolic rates, of female big horn sheep (Ovis canadensis) increased near roads 
regardless of their use. Furthermore, carnivores including gray fox, bobcat, black bear 
(Ursus americanus), badger (Taxidea taxus), and ringtail (Bassariscus astutus) have 
also been shown to avoid roads irrespective of their traffic volume (Baker and Leberg 
2018). 

4.2.2 Noise 

Cannabis cultivation sites often have substantial amounts of noise pollution resulting 
from road use, generators, and other equipment. This is concerning as wildlife 
responses to noise can occur at exposure levels of only 55-60 dB (Barber et al. 2009). 
(For reference, normal conversation is approximately 60 dB.) The impacts of noise on 
wildlife include disrupted communication, changes in predator-prey relationships, effects 
on foraging efficiency, changes in habitat selection, abundance, density, and diversity, 
increased stress and decreased immune response, behavioral changes, and effects on 
reproduction. 

Anthropogenic noise can disrupt the communication of many wildlife species (Patricelli 
and Blickley 2006). Frogs will often decrease their calling activity in response to noise 
(Sun and Narins 2005, Lengagne 2008, Caorsi et al. 2017). When exposed to noise, 
birds will sign at a higher pitch to ensure mating calls are heard, which has associated 
energy costs (Slabbekoorn and Peet 2003, Brumm 2004). If bird songs are not 
transmitted properly to their intended receivers (e.g., intraspecific males and females), 
territory occupancy and mate attraction may be negatively affected (Klump 1996). 
Similar to birds, bats have been shown to alter their echolocation call structure when 
subjected to anthropogenic noise (Gillam and McCracken 2007), and frogs increase the 
pitch of their calls (Parris et al. 2009). 

Noise exposure can also impact predator-prey relationships. This can occur through 
changes in the spatial distribution of predator or prey species or through alterations in 
their movements. Noise may decrease a predator's ability to hear its prey or vice versa. 
Noise may be especially impactful on nocturnal animals that primarily use hearing to 
hunt such as owls and bats. Additionally, prey species have been shown to increase 
their vigilance rates and anti-predator behavior in response to noise (Francis and Barber 
2013). Many prey species increase their vigilance behavior when exposed to noise 
because they need to rely more on visual detection of predators when auditory cues 
may be masked by noise (Rabin et al. 2006, Quinn et al. 2017). 

Relatedly, foraging efficiency of some wildlife species has been shown to decline in 
response to anthropogenic noise (Miksis-Olds et al. 2007). Bats have reduced foraging 
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success in areas with chronic noise, and this has been correlated to the decline of 12 
bat species in California that are either endangered or of special concern (Schaub et al. 
2008, Siemers and Schaub 2011 ). Chicks of tree swallows (Tachycineta bicolor) that 
are exposed to noise fail to beg when parents return with food (Leonard and Horn 
2012). Also, the structure of begging calls from chicks can be affected, and these 
alterations continue even when the noise is no longer present (Leonard and Horn 2008). 

Noise can also impact habitat selection of species as well as abundance, density, and 
diversity (Francis and Barber 2013). Bats, for example, have been shown to avoid areas 
with anthropogenic noise (Schaub et al. 2008, Siemers and Schaub 2011 ). Noise has 
also been shown to reduce the density of nesting birds (Francis et al. 2009). A study by 
Bayne et al. (2008) compared areas with natural resource extraction that had low levels 
of noise to those that had high levels of noise and found that those with high levels of 
noise had significantly reduced abundance and density of the songbirds. 

Exposure to noise can also cause increased stress in wildlife and result in decreased 
immune responses (Kight and Swaddle 2011 ). Blickley et al. (2012) reported that noise 
caused elevated levels of stress hormones in lekking male greater sage grouse 
(Centrocercus urophasianus). Northern spotted owls exposed to vehicle noise also had 
increased levels of stress hormones; this was particularly evident in males during times 
when they were exclusively responsible for feeding their mates and nestlings (Hayward 
et al. 2011 ). There is also evidence that noise can have an immunosuppressive effect in 
frogs (Tro'ianowski et al. 2017). 

Reproduction is another aspect that can be impacted by anthropogenic noise. Noise 
exposure can cause weakened pair preference in birds (Swaddle and Page 2007) as 
well as reduced pairing success that can lead to a decline in overall reproductive 
success (Habib et al. 2007). For example, the low frequency songs of great tits (Parus 
major) become ineffective in noisy environments, and these songs are strongly 
correlated with female fertility and sexual fidelity (Halfwerk et al. 2011 ). Hebert and 
Golightly (2006) also suggested that noise may influence the survival and nest success 
of marbled murrelets (Brachyramphus marmoratus), an endangered species in 
California. In addition, female gray tree frogs (Hy/a versico/or) cannot successful orient 
to male calls in the presence of noise, which likely has consequences on their 
reproductive success (Bee and Swanson 2007) 

4.2.3 Artificial Lighting 

Cannabis cultivation sites are increasingly using artificial lighting both in greenhouses 
and for "mixed-light" techniques to increase yields. This lighting can result in substantial 
light pollution effects on wildlife that include disruption of circadian rhythms and 
suppressed immune response, changes in foraging behavior, altered navigation and 
migration patterns, altered predator-prey relationships, impacts on reproduction, and 
phototaxis. The lighting materials used in cannabis cultivation also have environmental 
risks if not disposed of properly as they contain mercury and other toxins (O'Hare et al. 
2013). 
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Disruption of circadian rhythms due to light pollution can have both physiological and 
behavioral consequences for wildlife. Songbirds that live in areas with artificial lights 
often begin morning choruses during night hours (Derrickson 1988, Miller 2006, Fuller et 
al. 2007). Artificial lighting can also have negative impacts on bat roosts (Johnston et al. 
2004). The lesser horseshoe bat (Rhinolophus hipposideros), for example, showed 
significantly decreased activity and a delay in the start of commuting behavior when 
exposed to light (Stone et al. 1999). Larval amphibians like American toads (Bufo 
americanus) use photoperiod cues to behaviorally thermoregulate (Beiswenger 1977). 
Additionally, exposure to artificial light disrupts the production of melatonin in tiger 
salamanders (Ambystoma tigrinum), which ultimately can alter their metabolic rates and 
requiring them to increase time spent foraging (Perry et al. 2008). Gene expression can 
also be altered in animals that experience constant illumination {Perry et al. 2008). 
Finally, exposure to artificial light can suppress the immune response of species 
resulting in increased pathogen and parasite infections as well as increased tumor 
growth (Navara and Nelson 2007); this has been demonstrated in a variety of species 
from birds (Moore and Siopes 2000) and mammals (Bedrosian et al. 2011) to fish 
(Leonardi and Klempau 2003). 

Artificial lighting can also cause changes in foraging behavior. Many animals decrease 
foraging in high light levels because of the higher risk of predation; this includes rodents 
(Clarke 1983, Daly et al. 1992), seabirds (Mougeot and Bretagnolle 2000), rabbits 
(Gilbert and Boutin 1991 ), bats (Rydell 1992), and fish (Gibson 1978). Beach mice 
(Peromyscus po/ionotus), for example, decreased foraging in the presence of artificial 
light (Bird et al. 2004 ). Light pollution has been shown to disrupt night foraging in birds 
(CDFG 2007) and affect feeding patterns in juvenile salmon (Valdimarsson et al. 1997). 
The Pacific tailed frog (Ascaphus true1), a species of special concern in California, is 
normally active at only the darkest times of night (Hailman 1982); thus, they are likely to 
be influenced when artificial lighting causes them to decrease activity. 

Light pollution can also disrupt navigation and migration patterns as changes in ambient 
light guide migration patterns in a variety of species including salmonids, birds, 
butterflies, and eels (Rowan 1932, Lowe 1952, Grau et al. 1981, Froy et al. 2003). The 
migration of Pacific salmon species can be slowed or halted by the presence of artificial 
lights (Nightingale et al. 2006), as can out-migration of juvenile salmon (Tabor et al. 
2004 ). Also, exposure to light can decrease smoltification and body condition in 
Chinook salmon (Oncorhynchus tshawytscha; Hoffnagle and Fivizzani 1998). 
Additionally, artificial light can attract and disorient birds, disrupting their migration 
(Ogden 1996, Longcore and Rich 2016). Similarly, orientation and homing behavior of 
red-spotted news (Notophthlamus viridescens) can be disrupted by artificial light 
(Phillips and Borland 1992, 1994 ). The vertical migration of larval salamanders 
(Ambystoma spp.) is also influenced by ambient light levels (Anderson and Graham 
1967), and the disruption of their daily vertical movements can reduce growth and 
survival (Semlitsch 1987). 
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Predator-prey relationships can also be altered by artificial light. Predators may forage 
during times they normally would not, thus, overexploiting prey. Conversely, prey 
activity may decrease, decreasing the availability of prey for predators (Navara and 
Nelson 2007). For example, heteromyid rodents (pocket mice and kangaroo rats) 
showed reduced foraging behavior in the presence of artificial lighting as it was 
correlated with increased predation risk from owls (Brown et al. 1988). Juvenile salmon 
have also been shown to be more vulnerable to predation with increased light {Ginetz 
1972, Tabor et al. 2004). 

Artificial lighting may also impact reproduction of wildlife. The nest site choices of black
tailed godwits (Limos limosa), for example, are influenced by artificial lighting {Longcore 
and Rich 2004). In an experiment with juncos (Junco sp.), Rowan (1925) discovered 
that exposure to light can alter timing of breeding; juncos exposed to just a few minutes 
of artificial light came into reproductive condition despite it still being winter. Light 
pollution can also decrease night chorusing and mating activity of frogs {Longcore and 
Rich 2004). 

Phototaxis, a phenomenon which results in attraction and movement towards light, can 
disorient, entrap, and temporarily blind wildlife species that experience it (Longcore and 
Rich 2004 ). One well-researched example of this is juvenile sea turtles emerging from 
nests of sandy beaches often go toward the lights inland instead of toward the sea 
(Witherington and Bjorndal 1991, Salmon et al. 1995). Anurans, including frogs and 
toads, have also been shown to congregate at artificial light sources (Buchanan 2006). 

5. Direct Ingestion 

Wildlife may also directly ingest cannabis plants; the stalks can be enticing to deer, 
rodents, and potentially other herbivores or omnivores (Mallery 2010). However, the 
risks of direct ingestion in wildlife have not yet been well studied. Driemeier (1998) 
found that marijuana consumption can be lethal when consumed by ruminants. Also, 
evidence from accidental ingestion by canid and felid pets demonstrates that cannabis 
can cause vomiting, hypothermia, dehydration, changes in heart rate, seizures, and 
comas (Donaldson 2002, Fitzgerald et al. 2013). 
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Appendix A. Birds that have documented pesticide poisonings and their status. (Sources: Nettles 1976, Henny et al. 
1987, Uttere/11988, Augspurger et al. 1996, Mineau et al. 1999, F/eisch/i et al. 2004, Pimentel 2004) 

Order Common Name 

Accipitriformes Osprey 
Anseriformes American wigeon 
Anseriformes Black-bellied whistling-duck 
Anseriformes Blue-winged teal 
Anseriformes Brant goose 
Anseriformes Bufflehead 
Anseriformes Canada goose 
Anseriformes Cinnamon teal 
Anseriformes Fulvous whistling-duck 
Anseriformes Gadwall 
Anseriformes Greater white-fronted goose 
Anseriformes Green-winged teal 
Anseriformes Lesserscaup 
Anseriformes Mallard 
Anseriformes Mottled duck 
Anseriformes Muscovy duck 
Anseriformes Northern pintail 
Anseriformes Northern shoveler 
Anseriformes Ring-necked duck 
Anseriformes Ross's goose 
Anseriformes Snow goose 
Anseriformes Wood duck 
Cha rad riiformes Black tern 
Charadriiformes Caspian tern 
Charadriiformes Common snipe 
Charadriiformes Dunlin 
Charadriiformes Forster's tern 

Scientific Name 

Pandion ha/iaetus 
Anas americana 
Dendrocygna autumnalis 

Anas discors 
Branta bernicla 
Bucephala albeola 
Branta canadensis 
Anas cyanoptera 
Dendrocygna bico/or 
Anas stepera 
Anser albifrons 
Anas crecca 
Aythya affinis 
Anas platyrhynchos 
Anas fulvigula 
Cairina moschata 
Anas acuta 
Anas clypeata 
Aythya collaris 
Chen rossii 
Chen caerulescens 
Aix sponsa 
Chlidonias niger 
Sterna caspia 
Gallinago gallinago 
Ca/idris alpina 
Sterna forsteri 

A-1 

Special Status* 

CDF-S, CDFW-WL 

CDFW-SSC 

CDFW-SSC 

CDFW-SSC 

CDFW-SSC 
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Order Common Name Scientific Name Special Status* 
Charadriiformes Herring gull Larus argentatus 
Charadriiformes Killdeer Charadrius vociferus 
Charadriiformes Laughing gull Larus atricilla CDFW-WL 
Charadriiformes Least sandpiper Calidris minutilla 
Charadriiformes Ring-billed gull Larus delawarensis 
Charadriiformes Semipalmated plover Charadrius semipalmatus 
Charadriiformes Semipalmated sandpiper Calidris pusilla 
Ciconiiformes Black vulture Coragyps atratus 
Ciconiiformes Cattle egret Bubulcus ibis 
Ciconiiformes Glossy ibis Plegadis falcinellus 
Ciconiiformes Great blue heron Ardea herodias CDF-S 
Ciconiiformes Great egret Ardea alba CDF-S 
Ciconiiformes Snowy egret Egretta thula 
Ciconiiformes Turkey vulture Cathartes aura 
Columbiformes Inca dove Columbina inca 
Columbiformes Mourning dove Zenaida macroura 
Columbiformes Rock dove Columbalivia 
Falconiformes American kestrel Falco sparverius 
Falconiformes Bald eagle Haliaeetus leucocephalus BLM-S, CDFW-FP, USFS-S, USFWS-BCC 
Falconiformes Cooper's hawk Accipiter cooperii CDFW-WL 
Falconiformes Ferruginous hawk Buteo rega/is CDFW-WL, USFWS-BCC 
Falconiformes Golden eagle Aquila chrysaetos BLM-S, CDFW-FP, CDFW-WL, USFWS-BCC 
Falconiformes Merlin Falco columbarius CDFW-WL 
Falconiformes Mississippi kite lctinia mississippiensis 
Falconiformes Northern harrier Circus cyaneus CDFW-SSC 
Falconiformes Peregrine falcon Falco peregrinus CDF-S, CDFW-FP, USFWS-BCC 
Falconiformes Prairie falcon Falco mexicanus CDFW-WL, USFWS-BCC 
Falconiformes Red-shouldered hawk Buteo lineatus 
Falconiformes Red-tailed hawk Buteo jamaicensis 
Falconiformes Rough-legged hawk Buteo lagopus 
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Order Common Name Scientific Name Special Status* 
F alconiformes Sharp-shinned hawk Accipiter striatus CDFW-WL 

F alconiformes Swainson's hawk Buteo swainsoni BLM-S, USFWS-BCC 

Falconiformes White-tailed kite Elanus leucurus BLM-S, CDFW-FP 

Galliformes Greater sage-grouse Centrocercus urophasianus BLM-S, CDFW-SSC, IUCN-NT, USFS-S 

Galliformes Northern bobwhite Colinus virginianus 

Galliformes Wild turkey Meleagris gallopavo 
Gruiformes American coot Fulica americana 
Gruiformes Sandhill crane Grus canadensis CDFW-SSC, BLM-S, CDFW-FP, USFS-S 
Passeriformes American crow Corvus brachyrhynchos 

Passeriformes American goldfinch Carduelis tristis 

Passeriformes American robin Turdus migratorius 

Passeriformes American tree sparrow Spizella arborea 

Passeriformes Barn swallow Hirundo rustica 

Passeriformes Black-billed magpie Pica hudsonia 

Passeriformes Black-capped chickadee Poeci/e atricapilla CDFW-WL 
Passeriformes Blue jay Cyanocitta cristata 

Passeriformes Boat-tailed grackle Quiscalus major 

Passeriformes Brewer's blackbird Euphagus cyanocephalus 
Passeriformes Brown thrasher Toxostoma rufum 

Passeriformes Brown-headed cowbird Molothrus ater 
Passeriformes Cedar waxwing Bombycifla cedrorum 
Passeriformes Common grackle Quiscalus quiscula 
Passeriformes Common raven Corvus corax 
Passeriformes Common yellowthroat Geothlypis trichas saltmarsh: CDFW-SSC, USFWS-BCC 

Passeriformes Curve-billed thrasher Toxostoma curvirostre 

Passeriformes Dark-eyed junco Junco hyemalis 
Passeriformes Eastern bluebird Sialia sialis 
Passeriformes Eastern meadowlark Sturnella magna 
Passeriformes European starling Sturnus vulgaris 
Passeriformes Field sparrow Spizella pusilla 
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Order Common Name Scientific Name S.eecial Status* 
Passeriformes Great-tailed grackle Quiscalus mexicanus 
Passeriformes House finch Carpodacus mexicanus 
Passeriformes House sparrow Passer domesticus 
Passeriformes Northern cardinal Cardinalis cardinalis CDFW-WL 
Passeriformes Pine siskin Cardue/is pinus 
Passeriformes Prothonotary warbler Protonotaria citrea 
Passeriformes Red-winged blackbird Agelaius phoeniceus Kern: CDFW-SSC 
Passeriformes Rusty blackbird Euphagus carolinus 
Passeriformes Song sparrow Melospiza melodia 
Passeriformes Swamp sparrow Me/ospiza georgiana 
Passeriformes Tree swallow Tachycineta bicolor 
Passeriformes Vesper sparrow Pooecetes gramineus Oregon: CDFW-SSC, USFWS-BCC 
Passeriformes Western meadowlark Sturnella neglecta 
Passeriformes White-crowned sparrow Zonotrichia /eucophrys 
Passeriformes White-throated sparrow Zonotrichia albicollis 
Passeriformes Yellow-headed blackbird Xanthocephalus xanthocepha/us CDFW-SSC 
Pelecaniformes Brown pelican Pelecanus occidentalis California: BLM-S, CDFW-FP, USFS-S 
Piciformes Northern flicker Colaptes auratus 
Strigiformes Barn owl Tyto alba 
Strigiformes Barred owl Strix varia 
Strigiformes Eastern screech owl Megascops asio 
Strigiformes Great horned owl Bubo virginianus 
Strigiformes Short-eared owl Asio flammeus CDFW-SSC 
Strigiformes Snowy owl Bubo scandiacus 

*BLM-S: Bureau of Land Management- Sensitive; CDF-S: California Department of Forestry & Fire Protection- Sensitive; CDFW-FP: California 
Department of Fish & Wildlife- Fully Protected; CDFW-SSC: CDFW- Species of Special Concern; CDFW-WL: CDFW- Watch List; lUCN-NT: 
International Union for Conservation of Nature- Near Threatened; USFS-S: U.S. Forest Service- Sensitive; USFWS- BCC: U.S. Fish & Wildlife 
Service- Birds of Conservation Concern 
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Appendix B. Wildlife in which documented secondary poisoning by anticoagulant rodenticides occurred and their status 
(see text section 2.2 for sources). 

Common Name 
Bobcat 
European mink 
Coyote 

Red fox 
San Joaquin kit fox 
Gray fox 
Northern raccoon 

Polecat 
Stoat/ermine 
America badger 
Striped skunk 
Moutain lion 
Virginia opossum 
Heermann's kangaroo rat 
White-tailed deer 
Common raven 

American crow 
Red-tailed hawk 
Golden eagle 
Bald eagle 
Red-shouldered hawk 
Sharp-shinned hawk 
Cooper's hawk 

American kestrel 
Peregrine falcon 
Turkey vulture 

Barn owl 

Scientific Name 
Lynx rufus 
Mustela /utreola 
Canis latrans 
Vulpes vu/pes 
Vulpes macrotis mutica 
Urocyon cinereoargenteus 
Procyon lotor 
Mustela putorius 
Mustela erminea 
Taxidea taxus 
Mephitis mephitis 
Puma conco/or 
Didelphis virginiana 
Dipodomys heermanni 
Odocoi/eus virginianus 
Corvus corax 
Corvus brachyrhynchos 
Buteo jamaicensis 
Aquila chrysaetos 
Haliaeetus leucocephalus 
Buteo lineatus 
Accipiter striatus 
Accipiter cooperii 
Faco sparverius 
Falco peregrinus 
Cathartes aura 
Tyto alba 

Special Status* 

ESA-C, CESA-TH, USFS-S 
ESA-EN, CESA-TH 

CDFW-SSC 

ESA-EN, CESA-EN, CDFW-FP 

BLM-S, CDF-S, CDFW-FP, CDFW-WL, USFWS-BCC 

CDFW-FP, CDF-S, USFS-S, USFWS-BCC 

CDFW-WL 
CDFW-WL 

CDF-S, CDFW-FP, USFWS-BCC 
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Snowy owl 
Screech owl 
Great-horned owl 
Barred owl 
Northern spotted owl 

Long-eared owl 

Saw-whet owl 
Turkey 

Bubo scandiacus 
Megascops spp. 
Bubo virginianus 
Strix varia 
Strix occidentalis caurina 

Asia otus 
Aegolius acadicus 
Meleagris gallopavo 

ESA-TH, CESA-TH, CDF-S, CDFW-SSC, IUCN-NT 

CDFW-SSC 

*BLM-S: Bureau of Land Management- Sensitive; CDF-S: California Department of Forestry & Fire Protection- Sensitive; CDFW-FP: California 
Department of Fish & Wildlife- Fully Protected; CDFW-SSC: CDFW- Species of Special Concern; CDFW-WL: CDFW- Watch List; CESA-TH: 
California Endangered Species Act- Threatened; CESA-EN: CESA Endangered; ESA-C: Endangered Species Act (Federal)- Candidate; ESA-EN: 
ESA- Endangered; ESA-TH: ESA- Threatened; IUCN-NT: International Union for Conservation of Nature- Near Threatened; USFS-S: U.S. Forest 
Service- Sensitive; USFWS- BCC: U.S. Fish & Wildlife Service- Birds of Conservation Concern 
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