TRAFFIC IMPACT ANALYSIS

FOR

COOL DOLLAR GENERAL STORE

El Dorado County, California

Prepared For:

WoodCrest Companies

1410 Main Street, Suite C
Ramona, CA 92065

Prepared By:

KD Anderson \& Associates, Inc.

3853 Taylor Road, Suite G
Loomis, CA 95650
(916) 660-1555

July 24, 2019

Job No. 9470-02

Cool Dollar General
KD Anderson \& Associates, Inc.
Transportation Engineers
Exhibit K

TRAFFIC IMPACT ANALYSIS FOR COOL DOLLAR GENERAL STORE
 El Dorado County, California

TABLE OF CONTENTS

INTRODUCTION 1
Project Description 1
EXISTING SETTING 4
Study Area Circulation System - Roads 4
Study Area Intersections 4
Standards of Significance: Levels of Service - Methodology 5
Existing Traffic Volumes / Levels of Service 8
Collision History 10
Alternative Transportation Modes 10
Regulatory Setting 10
PROJECT CHARACTERISTICS 11
Trip Generation 11
Vehicle Trip Distribution / Assignment 12
PROJECT TRAFFIC IMPACTS 14
Existing Plus Project Traffic Conditions and Levels of Service 14
Project Impacts to Alternative Transportation Modes 16
Site Access 16
CUMULATIVE IMPACTS 18
Year 2040 Long Term Cumulative Conditions 18
SUMMARY AND CONCLUSIONS 22
APPENDIX 23

TRAFFIC IMPACT ANALYSIS FOR
 COOL DOLLAR GENERAL STORE
 El Dorado County, California

INTRODUCTION

This report documents KD Anderson \& Associates' analysis of the traffic impacts associated with developing a Dollar General Store in the rural El Dorado County community of Cool, California. This assessment of traffic impacts has been required by Caltrans District 3. The analysis identifies both current and future background conditions at key intersections in the vicinity of the site. To assess traffic impacts, the characteristics of the proposed project have been determined, including estimated trip generation and the directional distribution / assignment of project generated traffic. The extent of off-site impacts has been determined, and the adequacy of site access has been evaluated.

Project impacts have been quantified at the following study intersections:

1. SR 49/ St Florian Ct
2. SR 49/ Northside Dr
3. SR 49/ Commercial Driveway (south of Northside Drive)
4. SR 49/ SR 193
5. USPS Driveway/ Northside Dr
6. Project Driveway/ Northside Dr

Project Description

The proposed project consists of a 9.1 ksf Dollar General Store located on an approximately 1.68 acre site on the south side of Northside Drive about 190 feet east of SR 49 (centerline to centerline). The project will include development of 31 parking spaces per El Dorado County Zoning Ordinance requirements. Access to the site will be provided via a single driveway on Northside Drive. The driveway is about 35 feet from the USPS Driveway to the west and is about 655 feet from the Cool Boat and RV Storage across Northside Drive to the east. The project's Northside Drive frontage is currently unimproved, and other than access improvements development of the project will not include any other improvements along the Northside Drive frontage. Figures 1 and 2 display the regional location of the project and proposed site plan, respectively.

[^0]

KD Anderson \& Associates, Inc.
VICINITY MAP

EXISTING SETTING

This report section describes the facilities that are available today serving vehicular, pedestrian and bicycle traffic and transit users in El Dorado County, as well as policies that guide consideration of traffic impacts.

Study Area Circulation System - Roads

The text which follows provides information regarding the streets included in the study area.

State Route 49 (SR 49) serves north-south traffic throughout the Sierra Nevada foothills. In and near El Dorado County, State Route 49 runs from Plymouth in Amador County through Diamond Springs, Placerville, Coloma, Pilot Hill, and Cool to Auburn in Placer County. The portion of State Route 49 between Cool and Auburn contains sections that are narrow, winding, and steep. In the vicinity of the site, SR 49 is a 2-lane facility with no frontage improvements. The posted speed limit is 45 mph . The most recent traffic volume counts published by Caltrans indicate that SR 49 carries an Annual Average Daily Traffic volume of 8,800 vehicles per day north of SR 193, and trucks comprise 4% of the daily volume.

Northside Drive is a 2-lane Local street that intersects State Route 49 approximately 600 feet north of SR 193.

State Route 193 (SR 193) runs easterly from SR 49 in Cool to an intersection on SR 49 north of Placerville. The two-lane highway is generally far narrower than the Caltrans standard for this type of highway, except for a wider section near Georgetown and a narrower, steep, and winding section north of Placerville. In the vicinity of the site, SR 193 is a 2-lane facility with no frontage improvements, although a separated bike path exists along the northside of the road. The posted speed limit is 55 mph . The most recent traffic volume counts published by Caltrans indicate that SR 193 carries an Annual Average Daily Traffic volume of 7,600 vehicles per day east of SR 49, and trucks comprise 6% of the daily volume.

Study Area Intersections

The quality of traffic flow is often governed by the operation of key intersections. The following intersections have been identified for evaluation in this study in consultation with El Dorado County and Caltrans staff.

The State Route 49 / St Florian Court intersection is a "Tee" intersection controlled by an eastbound stop sign on St Florian Court. A northbound left turn lane is present on SR 49. The St Florian Court approach is a single lane, and there are no crosswalks present.

The State Route 49 / Northside Drive intersection is a "Tee" intersection controlled by a westbound stop sign on Northside Drive. A Two-Way-Left-Turn-Lane is present on SR 49. The Northside Drive approach is a single lane, and there are no crosswalks present.

The State Route 49 / Commercial Driveway intersection is a "Tee" controlled by a stop sign on eastbound Commercial Driveway. A Two-Way-Left-Turn-Lane is present on SR 49. The Commercial Driveway is a private drive, and there are no crosswalks present.

The State Route 49 / State Route 193 intersection is a four-way intersection controlled by an all-way stop with an overhead flasher. SR 49 has separate left turn lanes on each approach. A southbound right turn lane exists, and the northbound thru lane is wide enough to allow right turns outside of the queue of northbound traffic. The SR 193 westbound approach is wide enough to act as a combined left-thru lane and a separate right turn lane, and the eastbound leg is a single lane private drive. Crosswalks exist on the south and east side of the intersection.

The USPS Driveway / Northside Drive intersection is a "Tee" controlled by a stop sign on the southbound USPS Driveway. There are no auxiliary lanes or crosswalks present.

Standards of Significance: Levels of Service - Methodology

To assess the quality of existing traffic conditions, Levels of Service were calculated at study area intersections and for individual roadway segments. "Level of Service" is a qualitative measure of traffic operating conditions whereby a letter grade "A" through " F ", corresponding to progressively worsening traffic operating conditions, is assigned to an intersection or roadway segment. Table 1 presents the characteristics associated with each LOS grade. As shown in Table 1, LOS "A", " B " and " C " are considered satisfactory to most motorists, while LOS "D" is marginally acceptable. LOS " E " and " F " are associated with severe congestion and delay and are unacceptable to most motorists.

Local agencies and Caltrans adopt minimum Level of Service standards for their facilities. El Dorado County identifies LOS E as the acceptable Level of Service on roadways and state highways within the unincorporated areas of the County in the Community Regions and LOS D in the Rural Centers and Rural Regions except as specified in the General Plan. The analysis techniques presented in the Highway Capacity Manual, $6^{\text {th }}$ Edition were used to calculate Level of Service and to provide a basis for describing existing traffic conditions and evaluating the significance of project traffic impacts.

The SR 49 Transportation Concept Report indicates that the ultimate Concept Level of Service is LOS D, while LOS D is the expectation for SR 193.

[^1]Page 5

TABLE 1
LEVEL OF SERVICE DEFINITIONS

Level of Service	Signalized Intersection	Unsignalized Intersection	Roadway (Daily)
"A"	Uncongested operations, all queues clear in a single-signal cycle. Ave Delay ≤ 10 seconds per vehicle	Little or no delay. Ave Delay $\leq 10 \mathrm{sec} / \mathrm{veh}$	Completely free flow.
"B"	Uncongested operations, all queues clear in a single cycle. Delay > $10 \mathrm{sec} / \mathrm{veh}$ and $\leq 20 \mathrm{sec} / \mathrm{veh}$	Short traffic delays. Delay > $10 \mathrm{sec} / \mathrm{veh}$ and $\leq 15 \mathrm{sec} / \mathrm{veh}$	Free flow, presence of other vehicles noticeable.
"C"	Light congestion, occasional backups on critical approaches. Delay $>20 \mathrm{sec} / \mathrm{veh}$ and $<35 \mathrm{sec} / \mathrm{veh}$	Average traffic delays. Delay > $15 \mathrm{sec} /$ veh and $\leq 25 \mathrm{sec} / \mathrm{veh}$	Ability to maneuver and select operating speed affected.
"D"	Significant congestions of critical approaches but intersection functional. Cars required to wait through more than one cycle during short peaks. No long queues formed. Delay >35 sec/veh and < $55 \mathrm{sec} /$ veh	Long traffic delays. Delay > $25 \mathrm{sec} / \mathrm{veh}$ and $\leq 35 \mathrm{sec} / \mathrm{veh}$	Unstable flow, speeds and ability to maneuver restricted.
"E"	Severe congestion with some long standing queues on critical approaches. Blockage of intersection may occur if traffic signal does not provide for protected turning movements. Traffic queue may block nearby intersection(s) upstream of critical approach(es). Delay $>55 \mathrm{sec}$ and $\leq 80 \mathrm{sec} /$ veh	Very long traffic delays, failure, extreme congestion. Delay > 35 $\mathrm{sec} / \mathrm{veh}$ and $\leq 50 \mathrm{sec} / \mathrm{veh}$	At or near capacity, flow quite unstable.
"F"	Total breakdown, stop-and-go operation. Delay > $80 \mathrm{sec} / \mathrm{veh}$	Intersection often blocked by external causes. Delay > $50 \mathrm{sec} / \mathrm{veh}$	Forced flow, breakdown.
Sources: Highway Capacity Manual, $6^{\text {th }}$ Edition, and Transportation Research Board (TRB) Special Report 209.			

Traffic Signal Warrants. The extent to which a traffic signal may be justified is determined based on many factors. From the standpoint of traffic impact analysis, signal warrant criteria contained in the California Manual of Uniform Traffic Control Devices (CA MUTCD) are employed in order to assess the relative impact of the additional traffic accompanying a development proposal. For this analysis, Warrant 3 (Peak Hour Traffic) has been employed. Variation in warrant requirements occur based on the design speed of the road (i.e., > 40 mph) and on the location of the intersection (i.e., rural versus urban locations). In this case, rural criteria for roadway speeds above 40 mph have been employed. It is also important to note that other warrants addressing factors such as pedestrian activity and collision history are necessarily considered before a decision is made to install a traffic signal.

Standards of Significance. El Dorado County has identified criteria for determining the significance of traffic impacts. A traffic impact is considered to be significant under El Dorado County guidelines if the project causes an intersection to change from LOS D to LOS E. Worsening of conditions at facilities already operating at unacceptable levels of service is also considered a significant impact. The County's General Plan Policy TC-Xe defines "worsen" as any of the following conditions:
a. a 2% increase in traffic during the a.m. peak hour, p.m. peak hour or daily trips, or
b. the addition of 100 or more daily trips, or
c. the addition of 10 or more trips during the a.m. peak hour or the p.m. peak hour.

The County's current General Plan Policy TC-Xf notes that for all residential subdivisions of five or more parcels that worsens traffic on a County road as defined in Policies TC-Xe [A], [B] or [C] "the County shall condition the project to construct all road improvements necessary to maintain or attain Level of Service standards detailed in this Transportation and Circulation Element based on existing traffic plus traffic generated from the development plus forecasted traffic growth at 10 -years from project submittal." For all other discretionary projects that worsen traffic "the County shall condition the project to construct all road improvements necessary to maintain or attain adopted LOS standards."

However, the El Dorado County Superior Court issued a ruling in July 2017 that found certain provisions in Measure E unconstitutional. The court ruled that the previous language contained in Measure Y was still valid as detailed below:

At the time of approval of a tentative map for a single family residential subdivision of five or more parcels that worsens (defined as a project that triggers Policy TC-Xe [A] or [B] or [C]) traffic on the County road system, the County shall do one of the following:
(1) condition the project to construct all road improvements necessary to maintain or attain Level of Service standards detailed in this Transportation and Circulation Element based on existing traffic plus traffic generated from the development plus forecasted traffic growth at 10 -years from project submittal; or
(2) ensure the commencement of construction of the necessary road improvements are included in the County's 10-year CIP.

For all other discretionary projects that worsen (defined as a project that triggers Policy TC-Xe [A] or [B] or [C] traffic on the County road system, the County shall do one of the following:
(1) condition the project to construct all road improvements necessary to maintain or attain Level of Service standards as detailed in this Transportation and Circulation Element; or
(2) ensure the construction of the necessary road improvements is included in the County's 20-year CIP.

Existing Traffic Volumes / Levels of Service

Traffic Volume Counts. New traffic counts were made for this study on June 12, 2019. Intersection turning movement counts were made at study intersections during the period from 4:00 p.m. to 6:00 p.m. The highest hourly traffic volume period within the two hour window was identified as the peak hour and used for this analysis.

Figure 3 illustrates the intersection turning movement count data for both intersections. This figure also notes the geometric layout of each intersection and the location of traffic controls. This data has been used to determine the operating Level of Service (LOS) at each intersection.

Level of Service at Intersections. Levels of Service were calculated for different intersection control types using the respective methods presented in the Highway Capacity Manual, $6^{\text {th }}$ Edition (HCM 6 Ed). Intersection Levels of Service were calculated using SYNCHRO 10.0 software. For intersections controlled by side street stop signs, the reported Level of Service reflects the "worst case" movement, which is typically those motorists waiting to enter the main street.

As indicated in Table 2, each intersection delivers a peak hour Level of Service that satisfies minimum El Dorado County standards. Peak hour traffic signal warrants are satisfied at the SR 49 / SR 193 intersection.

TABLE 2
EXISTING INTERSECTION LEVELS OF SERVICE

Intersection	Control	PM Peak Hour		Signal* Warranted
		Average Delay (veh/sec)	LOS	
State Route 49 / Saint Florian Court Northbound left turn Eastbound approach	EB Stop	$\begin{gathered} 8.7 \\ 13.7 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	No
State Route 49 / Northside Drive Southbound left turn Westbound approach	WB Stop	$\begin{gathered} 7.9 \\ 16.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	No
State Route 49 / Timberline Commercial Access Northbound left turn Eastbound approach	EB Stop	$\begin{gathered} 9.0 \\ 14.2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	No
State Route 49 / State Route 193	AWS	17.7	C	Yes
USPS Driveway / Northside Drive Southbound approach Eastbound approach	SB Stop	$\begin{aligned} & 8.5 \\ & 7.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	No
* CA MUTCD Peak Hour Signal Warrant, Figure 4C-3.				

[^2]

SR 49/ St Florian Ct

SR 49/ Commercial Driveway

5

USPS Access/ Northside Dr

6

EXISTING TRAFFIC VOLUMES AND
LANE CONFIGURATIONS

Collision History

Traffic collision information was obtained for locations on SR 49 for the period of January 1, 2016 to December 31, 2018. During that time period a total of one collision was reported for the segment from 300 feet south of SR 193 to 300 feet north of St Florian Court. One rear-end collision occurred 65 feet south of SR 193.

Alternative Transportation Modes

Pedestrian Facilities. There are currently no sidewalks in the area surrounding the proposed project.

Bicycle Facilities. The El Dorado County General Plan (2018) outlines the location and nature of existing bicycle facilities in El Dorado County. Bicycle facilities are categorized within three classifications:

Class I Bikeway: trails or paths that are separated from automobile traffic, Class II Bikeway: bicycle lanes that are on street but delineated by striping, and Class III Bikeway: bicycle routes where bicycles and automobiles share the road.

There are currently separated bicycle paths on the north side of SR 193 that extends for .83 miles from SR 49.

Transit Facilities. The El Dorado County Transit Authority (EDCTA) and Lake Tahoe Transit provide transit service in El Dorado County. The El Dorado County Transit Authority serves the residents of western El Dorado County, providing scheduled fixed-route service, daily commute service to Sacramento, dial-a-ride service in Placerville and outlying communities, and chartered social service routes. Life-line service is also provided to the elderly, the disabled, and Sacramento commuters. For EDCTA's fixed-route service, seven routes are local (within El Dorado County), and 12 are commuter routes to Sacramento County. In fiscal year 2000/2001, EDCTA served nearly 295,000 riders. The commuter service was particularly well used with an average weekday ridership of approximately 500 . There are currently no bus routes that run through the surrounding area of the proposed project.

Regulatory Setting

El Dorado County General Plan. The El Dorado County General Plan Circulation Element sets forth future plans for the transportation system in the County.

State Route 49 TCR. Caltrans SR 49 (2017) identifies the long range plan for this facility. SR 49 in this area will remain a 2-lane conventional highway with concept Level of Service D.

State Route 193 TCR. Caltrans SR 193 (2017) identifies the long range plan for this facility. SR 193 in this area will remain a 2-lane conventional highway with concept Level of Service D.

[^3]
PROJECT CHARACTERISTICS

The relative impacts of developing the Dollar General Store and the adequacy of site access is dependent on the physical characteristics of the adjoining street system, as well as the amount of traffic generated by the proposed project. The amount of additional traffic on a particular section of the street network is dependent upon two factors:
I. Trip Generation, the number of new trips generated by the project, and
II. Trip Distribution and Assignment, the specific routes that the new traffic takes.

Trip Generation

Trip Generation Rates. This analysis considered trip generation rates derived from several sources. The Institute of Transportation Engineers (ITE) publication "Trip Generation, $10^{\text {th }}$ Edition" provides information on the characteristics of various retail uses. The use most similar to Dollar General Store is "Variety Store" (Code 814). The land use description notes that a Variety Store is a retail store providing health care \& beauty aids, cleaning supplies, snack food, household items and some apparel. This is not a "dollar store" where everything is priced at one dollar, but rather is a small neighborhood store offering value and convenience. The stores studied were free-standing and catered to the local neighborhood. The 15 sites studied had building floor areas that ranged from roughly 8,000 to 17,000 square feet. Table 3 identifies the trip generation rates reported by ITE.

TABLE 3
TRIP GENERATION RATES

		PM Peak Hour		
Land Use / Source	Unit	In	Out	Total
Variety Store	ksf	52%	48%	6.82
Dollar General Store	9.1 ksf	32	30	62
Pass-by Trips				
Net New Trips	34%	$<10>$	$<10>$	$<20>$
Source: ITE Trip Generation, $10^{\text {th }}$ Edition				

Trip Generation Forecasts. Table 3 displays the p.m. peak hour trip generation forecasts for the 9.1 ksf Dollar General Store. The project would generate 62 p.m. peak hour trips at its driveway. A portion of the traffic drawn to these stores would be drawn from the stream of traffic already passing the site. The ITE Trip Generation Handbook, $3^{\text {rd }}$ Edition notes that 34% of the weekday trips are "pass-by".

As noted in Table 3, the project is expected to generate 42 "new" trips during the p.m. peak hour.

[^4]The volume of traffic generated by variety stores is highest at midday and during the evening commute period. On a daily basis, these stores generate 63.47 trips per ksf. After discount for "pass-by trips", the proposed project may generate 381 new daily trips ($1 / 2$ inbound and $1 / 2$ outbound).

Truck Trips. The proposed project will receive regular deliveries from the Dollar General Stores regional distribution center serving this area of California. Project proponents anticipate that 1-2 full size trucks will visit the store each week, although smaller single unit trucks may visit each day. At typical Dollar General Stores some of the full size trucks are expected to be STAA trucks (53') permitted on California highways under the Surface Transportation Authorization Act. However, when the regional routes providing access to individual stores are not designated for STAA, alternative vehicles are used. This is the case on this portion of SR 49 which is not an STAA terminal route.

Site truck circulation has been reviewed. The project will result in trucks turning into the site and turning first right into the parking aisle that runs parallel to Northside Drive. From that point the truck will back into the aisle towards the store's rear door. After completing the delivery the trucks will proceed to Northside Drive. This is a common Dollar General Store configuration, and the parking layout is wide enough to accommodate these movements.

Vehicle Trip Distribution / Assignment

The distribution of project traffic was determined based on knowledge of the demographic distribution of residences and competing stores in this area of El Dorado County and on market characteristics of Dollar General Stores. As noted in Table 4, assuming a primary trade area that extends 1-2 miles from the site, the new trips attracted to the site will arrive primarily from the south along SR 49 and east along SR 193, with lesser shares arriving from the north and from the businesses that already exist along SR 49. Pass-by trips will be drawn from passing traffic on SR 49 in general proportion to the current peak hour volumes from each direction.

TABLE 4
DIRECTIONAL TRIP DISTRIBUTION (NEW TRIPS)

Direction	Route	Percentage of New Trips
North	SR 49 north of Northside Drive	10%
East	SR 193 east of SR 49	40%
South	SR 49 south of Northside Drive	40%
West	Local businesses	10%
Total		100%

Using the trip generation and distribution assumptions described above, the trips generated by the proposed project were assigned to the study area street system. Figure 4 presents peak hour volumes accompanying development of the project.

[^5]

PROJECT TRAFFIC IMPACTS

Existing Plus Project Traffic Conditions and Levels of Service

Figure 5 superimposes project trips onto the current background traffic volumes to create the "Existing plus Project" condition. Subsequent tables compare the "Existing" and "Existing plus Project" Levels of Service.

Project Traffic Impacts to Level of Service at Intersections. As shown in Table 5, because the amount of traffic projected to be generated by the project is relatively low, the addition of project traffic would not appreciably increase the length of delays already occurring at study intersections, and the project does not result in any change to the overall Level of Service at each location. Projected increases in delay are calculated to be less than one (1) second. Levels of Service will remain within adopted minimum standards of El Dorado County at each location.

Traffic Signal Warrants. The volume of traffic occurring at each intersection with development of the project was again compared to the CA MUTCD peak hour signal warrant thresholds. Traffic signals continue to be warranted at SR 49 / SR 193 with the project. The SR 193 TCR suggests a roundabout will someday be installed at this location, but no funding is identified. Currently, improvements to this intersection are not included in El Dorado County's regional traffic impact fee program.

TABLE 5
EXISTING PLUS PROJECT INTERSECTION LEVELS OF SERVICE

Intersection	Control	PM Peak Hour				Signal Warrant
		Existing No Project		Existing Plus Project		
		LOS	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	
State Route 49 / Saint Florian Court Northbound left turn Eastbound approach	EB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 8.7 \\ 13.7 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 8.7 \\ 13.8 \\ \hline \end{gathered}$	No
State Route 49 / Northside Drive Southbound left turn Westbound approach	WB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 7.9 \\ 16.3 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 7.9 \\ 18.5 \end{gathered}$	No
State Route 49 / Timberline Commercial Access Northbound left turn Eastbound approach	EB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 9.0 \\ 14.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 14.6 \\ \hline \end{gathered}$	No
State Route 49 / State Route 193	AWS	C	17.7	C	18.8	Yes
USPS Driveway / Northside Drive Southbound approach Eastbound approach	SB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.7 \\ & 7.4 \\ & \hline \end{aligned}$	No
Project Access / Northside Drive Northbound approach	NB Stop	--	--	A	8.7	No

[^6]
Project Impacts to Alternative Transportation Modes

Development of the proposed Dollar General Store may incrementally contribute to the demand for facilities to serve pedestrians, cyclists and transit riders in this area of El Dorado County, but this demand is expected to be relatively minor.

Pedestrian Impacts. It is unlikely employees or customers of this project will elect to walk in appreciable numbers to and from the site, as there is little residential or commercial development near the site.

Bicycle Impacts. While the use of bicycles may be an option for employees or customers to the site, such traffic will likely be low. The number of cyclists associated with this project is not likely to create any appreciable safety impacts on SR 49 where the paved shoulder is already available to provide access to the project.

Transit Impacts. Project employees or customers are unlikely to use bus transit service, as no fixed routes pass through the site area.

Site Access

Throat Depth. Access to the site is proposed via a driveway on the south side of Northside Drive. The driveway is 40 feet wide. The main parking aisle is separated from Northside Drive by about 40 feet of throat. Two waiting vehicles can queue prior to blocking access to those parking spaces. This layout is expected to operate satisfactorily given the low traffic volumes projected to be generated by the site. The Level of Service calculations indicate that the $95^{\text {th }}$ percentile queue at the exit will be 1 vehicle or less during peak periods, which can be accommodated in the 40 feet.

[^7]

CUMULATIVE IMPACTS

The impacts of the Dollar General Store project have also been considered within the context of future traffic conditions in this area of El Dorado County. Long term traffic conditions have been forecast and evaluated based on forecasts from the El Dorado County regional demand forecasting model.

Year 2040 Long Term Cumulative Conditions

Approach to Developing Traffic Volume Forecasts. In El Dorado County long term future traffic conditions are identified by the regional travel demand forecasting model maintained by El Dorado County. This tool has been employed to develop traffic volume forecasts for the Regional Transportation Plan, and for EIR's prepared for projects throughout the County. The most current version of the model has been employed for this cumulative analysis.

Methods. The approach taken to prepare background traffic volume forecasts for this analysis makes use of data from the current version of the El Dorado County regional traffic model. The incremental change in peak hour traffic was determined on a segment by segment basis through comparison of Year 2015 baseline and Year 2040 forecasts (refer to Appendix for 2015 and 2040 model forecasts). These forecasts indicate that relatively little growth will occur on study area streets.

Traffic Volume Forecasts. Figure 6 identifies "No Project" background Year 2040 traffic volumes, while Figure 7 identifies Year 2040 volumes with Dollar General Store.

Level of Service at Intersections / Traffic Signal Warrants - No Project. Peak hour intersection Levels of Service were recalculated assuming no change to current intersection geometries. As shown in Table 7, without the project all study intersections will continue to operate with Levels of Service that satisfy minimum LOS D standard. Peak hour traffic signal warrants (warrant 3) would be satisfied at the SR 49/SR 193 intersection.

Level of Service at Intersections / Traffic Signal Warrants - Plus Project. As noted in Table 7, the addition of project trips does not result in any intersection operating with Level of Service in excess of the LOS D minimum. Thus, the project's impacts are not significant, and mitigation is not required based on Level of Service.

The proposed project would contribute its fair share to the cost of regional circulation improvements by paying adopted fees and making frontage improvements, but no additional mitigation related to roadway capacity and Level of Service is required.

[^8]Page 18

SR 49/ St Florian Ct

SR 49/ Commercial Driveway

CUMULATIVE TRAFFIC VOLUMES

KD Anderson \& Associates, Inc.

SR 49/ St Florian Ct

SR 49/ Commercial Driveway

CUMULATIVE PLUS PROJECT
KD Anderson \& Associates, Inc. TRAFFIC VOLUMES AND LANE CONFIGURATIONS

TABLE 7
YEAR 2040 PLUS PROJECT INTERSECTION LEVELS OF SERVICE

Intersection	Control	PM Peak Hour				Signal Warrant
		Cumulative No Project		Cumulative Plus Project		
		LOS	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	
State Route 49 / Saint Florian Court Northbound left turn Eastbound approach	EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 9.3 \\ 18.3 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 9.3 \\ 18.4 \end{gathered}$	No
State Route 49 / Northside Drive Southbound left turn Westbound approach	WB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 8.2 \\ 21.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 8.3 \\ 25.4 \\ \hline \end{gathered}$	No
State Route 49 / Timberline Commercial Access Northbound left turn Eastbound approach	EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 9.5 \\ 16.6 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 9.6 \\ 17.2 \end{gathered}$	No
State Route 49 / State Route 193	AWS	D	30.6	D	33.7	Yes
USPS Driveway / Northside Drive Southbound approach Eastbound approach	SB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 8.7 \\ & 7.4 \\ & \hline \end{aligned}$	No
Project Access / Northside Drive Northbound approach	NB Stop	--	--	A	8.8	No

SUMMARY AND CONCLUSIONS

This report documents KD Anderson \& Associates' analysis of the traffic impacts associated with developing a Dollar General Store on Northside Drive in El Dorado County, California. The analysis addresses both current and future background conditions at key intersections in the vicinity of the site. To assess traffic impacts, the characteristics of the proposed project have been determined, including estimated trip generation and the directional distribution / assignment of project generated traffic.

The proposed project consists of a 9.1 ksf Dollar General Store located on a 1.68 acre site on the south side of Northside Drive about 190 feet east of SR 49. The project will include development of 31 parking spaces per El Dorado County Zoning Ordinance requirements. Access to the site will be provided via a new driveway to Northside Drive. The Northside Drive site frontage is currently unimproved, with no frontage improvements beyond the driveway improvements are planned with the development of the project.

The project is expected to generate a total of 578 daily trips, with roughly 11% or 62 trips during the p.m. peak hour. After discounting for pass-by trips already occurring on SR 49 adjacent to the site, the project is projected to generate 42 new trips in the weekday p.m. peak hours.

Existing Plus Project Traffic Conditions. Development of the project alone does not result in a significant impact to traffic based on the criteria adopted by El Dorado County. Satisfactory operations are currently experienced at the study intersections and no changes to existing Levels of Service are projected with development of the site. Traffic signal warrants are met with and without the project at the SR 49/ SR 193 intersection.

The project access will be improved to El Dorado County encroachment permit standards. However, the volume of traffic associated with the project does not result in conditions that satisfy a separate left turn lane on Northside Drive.

Long Term Cumulative Traffic Impacts. The study intersections are projected to operate without significant delays in the future with the existing traffic controls. The average delay for all vehicles would not exceed the County's LOS D minimum standards with or without development of the proposed project. Traffic signal warrants would continue to be met at the SR 49/SR 193 intersection. Typically, El Dorado County monitors the operation of intersections, and adds them to the fee priority list as appropriate. The proposed project would contribute its fair share to the cost of regional circulation improvements, including any SR 49/SR193 improvements by paying adopted fees, and no additional mitigation related to roadway capacity and Level of Service is required.

[^9]Page 22

APPENDIX

(Traffic Counts, LOS Calculations)

Prepared by National Data \& Surveying Services

SR 49 \& St Florian Ct

Peak Hour Turning Movement Count

ID: 19-07230-001
City: Cool

Total Vehicles (Noon)

Total Vehicles (PM)

AM	0	0	0	0	0	AM
	0	0	0	0	0	NOON

Day: Wednesday
Date: 06/12/2019

Bikes (NOON)

Bikes (PM)

Intersection Turning Movement Count
Location: SR 49 \& St Florian Ct City: Cool
Control: 1-Way Stop (EB)

Total																	
NS/EW Streets:	SR 49				SR 49				St Florian Ct				St Florian Ct				
PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	45	0	0	0	106	0	0	0	0	1	0	0	0	0	0	152
4:15 PM	0	71	0	0	0	101	1	0	0	0	0	0	0	0	0	0	173
4:30 PM	0	69	0	0	0	144	0	0	0	0	1	0	0	0	0	0	214
4:45 PM	1	59	0	0	0	128	0	0	0	0	0	0	0	0	0	0	188
5:00 PM	0	65	0	0	0	139	1	0	1	0	1	0	0	0	0	0	207
5:15 PM	0	63	0	0	0	148	1	0	0	0	0	0	0	0	0	0	212
5:30 PM	0	50	0	0	0	128	0	0	0	0	0	0	0	0	0	0	178
5:45 PM	0	54	0	0	0	124	1	0	0	0	1	0	0	0	0	0	180
TOTAL VOLUMES: APPROACH \%'s:	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	1	476	0	0	0	1018	4	0	1	0	4	0	0	0	0	0	1504
	0.21\%	99.79\%	0.00\%	0.00\%	0.00\%	99.61\%	0.39\%	0.00\%	20.00\%	0.00\%	80.00\%	0.00\%					
PEAK HR :	04:30 PM - 05:30 PM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	559	$\begin{gathered} 2 \\ 0.500 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \\ \\ 0.37 \end{gathered}$	$\begin{gathered} 2 \\ 0.500 \\ 5 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL				
PEAK HR VOL :	1	256	0	0													821
PEAK HR FACTOR :	0.250	0.928	0.000	0.000		0.944											
	0.931					0.941											0.959

National Data \& Surveying Services
Intersection Turning Movement Count

Intersection Turning Movement Count

Location: SR 49 \& St Florian Ct City: Cool

Project ID: 19-07230-001
Date: 6/12/2019
Pedestrians (Crosswalks)

NS/EW Streets:	SR 49		SR 49		St Florian Ct		St Florian Ct		
PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES : APPROACH \%'s :	0	0	0	0	0	0	0	0	0
PEAK HR :	04:30	:30 PM							TOTAL
PEAK HR VOL: PEAK HR FACTOR :	0	0	0	0	0	0	0	0	0

Prepared by National Data \& Surveying Services

SR 49 \& Northside Dr

Peak Hour Turning Movement Count

ID: 19-07230-002
City: Cool

Total Vehicles (Noon)

Total Vehicles (PM)

Total Vehicles (Noon)

SR 49
SOUTHBOUND

Day: Wednesday
Date: 06/12/2019

AM	0	0	0	0	0	AM
NOON	0	0	0	0	0	NOON
	PM	0	556	5	0	260

Bikes (PM)

Intersection Turning Movement Count

Location: SR 49 \& Northside Dr City: Cool
Control: 1-Way Stop (WB)

Total																	
NS/EW Streets:	SR 49				SR 49				Northside Dr				Northside Dr				
PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	43	6	0	2	105	0	0	0	0	0	0	6	0	3	0	165
4:15 PM	0	66	10	0	3	99	0	0	0	0	0	0	10	0	2	0	190
4:30 PM	0	70	6	0	1	143	0	0	0	0	0	0	10	0	1	0	231
4:45 PM	0	57	6	0	2	125	0	0	0	0	0	0	8	0	2	0	200
5:00 PM	0	65	5	0	2	139	0	0	0	0	0	0	3	0	1	0	215
5:15 PM	0	61	3	0	0	149	0	0	0	0	0	0	4	0	3	0	220
5:30 PM	0	47	6	0	1	126	0	0	0	0	0	0	6	0	1	0	187
5:45 PM	0	55	1	0	0	125	0	0	0	0	0	0	2	0	0	0	183
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES:	0	464	43	0	11	1011	0	0	0	0	0	0	49	0	13	0	1591
APPROACH \%'S :	0.00\%	91.52\%	8.48\%	0.00\%	1.08\%	98.92\%	0.00\%	0.00\%					79.03\%	0.00\%	20.97\%	0.00\%	
PEAK HR :	04:30 PM - 05:30 PM				$\begin{gathered} 5 \\ 0.625 \end{gathered}$	556	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 25 \\ 0.625 \end{gathered}$	0		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL					
PEAK HR VOL:	0	253	20	0											7		866
PEAK HR FACTOR :	0.000	0.904	0.833	0.000		0.933								0.000	0.583		
		0.898				0.941											0.937

National Data \& Surveying Services
Intersection Turning Movement Count

Intersection Turning Movement Count

Location: SR 49 \& Northside Dr City: Cool			Project ID: 19-07230-002 Date: 6/12/2019						
			Pedestrians (Crosswalks)						
NS/EW Streets:	SR 49		SR 49		Northside Dr		Northside Dr		
PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES: APPROACH \%'s :	0	0	0	0	0	0	0	0	0
PEAK HR :	04:30	30 PM							TOTAL
PEAK HR VOL: PEAK HR FACTOR :	0	0	0	0	0	0	0	0	0

Prepared by National Data \& Surveying Services

United States Postal Service Dwy Access \& Northside Dr

Peak Hour Turning Movement Count

ID: 19-07230-003
City: Cool

Total Vehicles (Noon)

Total Vehicles (PM)
polaivemies (ivoom)

United States Postal Service Dwy
Access
SOUTHBOUND

Day: Wednesday
Date: 06/12/2019

Bikes (NOON)

Bikes (PM)

National Data \& Surveying Services

Intersection Turning Movement Count
Location: United States Postal Service Dwy Access \& Northside Dr
City: Cool Project ID: 19-07230-003 Control: No Control Total

Total																	
NS/EW Streets:	United States Postal Service Dwy Access				United States Postal Service Dwy Access				Northside Dr				Northside Dr				
PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	0	0	0	0	0	9	0	8	0	0	0	0	0	0	0	17
4:15 PM	0	0	0	0	0	0	10	0	12	1	0	0	0	2	0	0	25
4:30 PM	0	0	0	0	0	0	12	0	7	0	0	0	0	0	0	0	19
4:45 PM	0	0	0	0	0	0	9	0	8	0	0	0	0	0	0	0	17
5:00 PM	0	0	0	0	0	0	4	0	5	2	0	0	0	0	0	0	11
5:15 PM	0	0	0	0	0	0	5	0	3	0	0	0	0	2	0	0	10
5:30 PM	0	0	0	0	0	0	7	0	7	0	0	0	0	0	0	0	14
5:45 PM	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	3
TOTAL VOLUMES : APPROACH \%'s:	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	0	0	0	0	0	0	58	0	51	3	0	0	0	4	0		116
					0.00\%	0.00\%	100.00\%	0.00\%	94.44\%	5.56\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	
PEAK HR :	04:00 PM - 05:00 PM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	0	$\begin{gathered} 40 \\ 0.833 \\ 33 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 35 \\ 0.729 \end{gathered}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	2	0	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	0	0	0	0						1							78
PEAK HR FACTOR :	0.000	0.000	0.000	0.000		0.000				0.250				0.250	0.000		
						0.833				0.6				0.2			0.780

National Data \& Surveying Services
Intersection Turning Movement Count

Loaidntersection Turning Movement Count
 City: Cool
 Date: 6/12/2019

NS/EW Streets:	Pedestrians (Crosswalks)								
	United States Postal Service Dwy Access		United States Postal Service Dwy Access		Northside Dr		Northside Dr		
PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
PN	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES: APPROACH \%'s :	0	0	0	0	0	0	0	0	0
PEAK HR :	04:00	:00 PM							TOTAL
PEAK HR VOL PEAK HR FACTOR	0	0	0	0	0	0	0	0	0

Prepared by National Data \& Surveying Services
SR 49 \& Kirkson Realty / Timberline Commercial Dwy

National Data \& Surveying Services

Intersection Turning Movement Count
Location: SR 49 \& Kirkson Realty / Timberline Commercial Dwy
City: CoOl Project ID: 19-07230-004
Control: No Control Total

NS/EW Streets:	SR 49				SR 49				Kirkson Realty / Timberline Commercial Dwy				Kirkson Realty / Timberline Commercial Dwy				
PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
4:00 PM	9	46	0	0	0	103	9	0	4	0	6	0	0	0	0	0	177
4:15 PM	2	73	0	0	0	103	5	0	2	0	4	0	0	0	0	0	189
4:30 PM	5	71	0	0	0	143	9	0	5	0	6	0	0	0	0	0	239
4:45 PM	5	61	0	0	0	125	9	0	4	0	0	0	0	0	0	0	204
5:00 PM	13	60	0	0	0	133	9	0	8	0	8	0	0	0	0	0	231
5:15 PM	14	61	0	1	0	146	7	0	3	0	11	0	0	0	0	0	243
5:30 PM	9	48	0	0	0	129	2	0	4	0	5	0	0	0	0	0	197
5:45 PM	8	55	0	1	0	122	6	0	2	0	5	0	0	0	0	0	199
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	65	475	0	2	0	1004	56	0	32	0	45	0	0	0	0	0	1679
APPROACH \%'s :	11.99\%	87.64\%	0.00\%	0.37\%	0.00\%	94.72\%	5.28\%	0.00\%	41.56\%	0.00\%	58.44\%	0.00\%					
PEAK HR :		4:30 PM -	5:30 PM														TOTAL
PEAK HR VOL:	37	253	0	1	0	547	34	0	20	0	25	0	0	0	0	0	917
PEAK HR FACTOR :	0.661	0.891	0.000	0.250	0.000	0.937	0.944	0.000	0.625	0.000	0.568	0.000	0.000	0.000	0.000	0.000	
		0.9				0.9				0.7							0.943

Intersection Turning Movement Count

Intersection Turning Movement Count

Location: SR 49 \& Kirkson Realty / Timberline Commercial Dwy City: Cool

Project ID: 19-07230-004
Date: 6/12/2019
Pedestrians (Crosswalks)

NS/EW Streets:					Kirkson Realty /Timberline Commercial		Kirkson Realty /Timberline Commercial				
	SR 49		SR 49								
	NORTH LEG		SOUTH LEG		EAST LEG				WEST LEG		
PM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL		
4:00 PM	0	0	0	0	0	0	0	0	0		
4:15 PM	0	0	0	0	0	0	0	0	0		
4:30 PM	0	0	0	0	0	0	0	0	0		
4:45 PM	0	0	0	0	0	0	0	0	0		
5:00 PM	0	0	0	0	0	0	0	0	0		
5:15 PM	0	0	0	0	0	0	0	0	0		
5:30 PM	0	0	0	0	0	0	0	0	0		
5:45 PM	0	0	0	0	0	0	0	0	0		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL		
TOTAL VOLUMES: APPROACH \%'s :	0	0	0	0	0	0	0	0	0		
PEAK HR :	04:30	30							TOTAL		
PEAK HR VOL: PEAK HR FACTOR :	0	0	0	0	0	0	0	0	0		

Prepared by National Data \& Surveying Services
SR 49 \& SR 193
Peak Hour Turning Movement Count

ID: 19-07230-005
City: Cool

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total Vehicles (AM)

Total Vehicles (Noon)

Total Vehicles (PM)

Bikes (PM)

National Data \& Surveying Services

Intersection Turning Movement Count

Location: SR 49 \& SR 193 City: Cool
Control: 4-Way Stop
Project ID: 19-07230-005 Date: 6/12/2019

Total																	
NS/EW Streets:	SR 49				SR 49				SR 193				SR 193				
PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	3	21	19	0	70	42	1	0	1	3	2	0	15	3	32	0	212
4:15 PM	4	27	13	0	74	36	1	4	3	5	1	0	10	2	44	0	224
4:30 PM	3	39	15	0	95	49	4	0	1	10	3	0	13	3	40	0	275
4:45 PM	4	34	6	0	87	45	5	0	1	7	2	0	3	6	35	0	235
5:00 PM	6	34	15	0	93	53	3	0	4	9	4	0	9	7	32	0	269
5:15 PM	2	33	22	0	99	66	2	0	1	9	1	0	8	2	42	0	287
5:30 PM	5	28	14	0	92	46	3	0	2	2	6	0	11	4	30	0	243
5:45 PM	4	34	20	0	88	49	2	0	0	6	3	0	11	10	32	0	259
TOTAL VOLUMES: APPROACH \%'s:	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	31	250	124	0	698	386	21	4	13	51	22	0	80	37	287	0	2004
	7.65\%	61.73\%	30.62\%	0.00\%	62.94\%	34.81\%	1.89\%	0.36\%	15.12\%	59.30\%	25.58\%	0.00\%	19.80\%	9.16\%	71.04\%	0.00\%	
PEAK HR :	04:30 PM - 05:30 PM				$\begin{aligned} & 374 \\ & 0.944 \end{aligned}$	213	14	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 7 \\ 0.438 \end{gathered}$	35		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 33 \\ 0.635 \end{gathered}$	18	149	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	15	140	58	0													1066
PEAK HR FACTOR :	0.625	0.897	0.659	0.000		0.807	0.700			0.875	0.625			0.643	0.887		
	0.934					0.900				0.765				0.893			0.929

Intersection Turning Movement Count

Intersection Turning Movement Count

Location: SR 49 \& SR 193 City: Cool

Project ID: 19-07230-005
Date: 6/12/2019
Pedestrians (Crosswalks)

NS/EW Streets:	SR 49		SR 49		SR 193		SR 193		
PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES : APPROACH \%'s :	0	0	0	0	0	0	0	0	0
PEAK HR :	04:30	30 PM							TOTAL
PEAK HR VOL: PEAK HR FACTOR :	0	0	0	0	0	0	0	0	0

Intersection						

Major/Minor	Minor2	Major1	Major2		
Conflictiting Flow All	888	608	610	0	-
\quad Stage 1	608	-	-	-	-
\quad Stage 2	280	-	-	-	-

	NBL	NBT EBLn1	SBT	SBR
Minor Lane/Major Mvmt	969	-416	-	-
Capacity (veh/h)	0.001	-0.008	-	-
HCM Lane V/C Ratio	8.7	-13.7	-	-
HCM Control Delay (s)	A	-	B	-
HCM Lane LOS	-			
HCM 95th \%tile Q(veh)	0	-	0	-

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	\%		个		*	4
Traffic Vol, veh/h	25	7	253	20	5	556
Future Vol, veh/h	25	7	253	20	5	556
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	130	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	27	8	275	22	5	604

Major/Minor	Minor1	Major1	Major2		
Conflicting Flow All	900	286	0	0	297
\quad Stage 1	286	-	-	-	-
\quad Stage 2	614	-	-	-	-

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-354	1264	-
HCM Lane V/C Ratio	-	-0.098	0.004	-
HCM Control Delay (s)	-	-	16.3	7.9
HCM Lane LOS	-	-	C	A
HCM 95th \%tile Q(veh)	-	-	0.3	0

Intersection						

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	951	-441	-	-
HCM Lane V/C Ratio	0.043	-0.111	-	-
HCM Control Delay (s)	9	-14.2	-	-
HCM Lane LOS	A	-	B	-
HCM 95th \%tile Q(veh)	0.1	-	0.4	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay，s／veh $\quad 17.7$ | |
| Intersection LOS | C |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger	「＇	\％	4	「	${ }^{7}$	4	「
Traffic Vol，veh／h	7	35	10	33	18	149	15	140	58	374	213	14
Future Vol，veh／h	7	35	10	33	18	149	15	140	58	374	213	14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	38	11	36	20	162	16	152	63	407	232	15
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.5			11.9			12			22.1		
HCM LOS	B			B			B			C		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left，\％	100%	0%	0%	13%	65%	0%	100%	0%	0%
Vol Thru，\％	0%	100%	0%	67%	35%	0%	0%	100%	0%
Vol Right，\％	0%	0%	100%	19%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	15	140	58	52	51	149	374	213	14
LT Vol	15	0	0	7	33	0	374	0	0
Through Vol	0	140	0	35	18	0	0	213	0
RT Vol	0	0	58	10	0	149	0	0	14
Lane Flow Rate	16	152	63	57	55	162	407	232	15
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.034	0.3	0.112	0.122	0.117	0.296	0.759	0.399	0.023
Departure Headway（Hd）	7.608	7.099	6.387	7.74	7.601	6.573	6.718	6.211	5.501
Convergence，Y／N	Yes								
Cap	468	502	556	466	468	543	537	576	646
Service Time	5.404	4.895	4.182	5.44	5.395	4.367	4.489	3.981	3.271
HCM Lane V／C Ratio	0.034	0.303	0.113	0.122	0.118	0.298	0.758	0.403	0.023
HCM Control Delay	10.7	12.9	10	11.5	11.4	12.1	27.8	13.1	8.4
HCM Lane LOS	B	B	A	B	B	B	D	B	A
HCM 95th－tile Q	0.1	1.3	0.4	0.4	0.4	1.2	6.7	1.9	0.1

Intersection						
Int Delay, s/veh	7.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\mathbf{N}	F		kr	
Traffic Vol, veh/h	35	1	2	0	0	40
Future Vol, veh/h	35	1	2	0	0	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	45	1	3	0	0	51

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	3	0	-	0	94	3
\quad Stage 1	-	-	-	-	3	-
\quad Stage 2	-	-	-	-	91	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1619	-	-	-	906	1081
\quad Stage 1	-	-	-	-	1020	-
\quad Stage 2	-	-	-	-	933	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1619	-	-	-	881	1081
Mov Cap-2 Maneuver	-	-	-	-	881	-
\quad Stage 1	-	-	-	-	991	-
\quad Stage 2	-	-	-	-	933	-
Approach	EB	WB	SB			
HCM Control Delay, s	7.1	0	8.5			
HCM LOS						

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1619	-	-	-1081
HCM Lane V/C Ratio	0.028	-	-	-0.047
HCM Control Delay (s)	7.3	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-

	NBL	NBT EBLn1	SBT	SBR
Minor Lane/Major Mvmt	967	-414	-	-
Capacity (veh/h)	0.001	-0.008	-	-
HCM Lane V/C Ratio	8.7	-13.8	-	-
HCM Control Delay (s)	A	-	B	-
HCM Lane LOS	-			
HCM 95th \%tile Q(veh)	0	-	0	-

Intersection						
Int Delay, s/veh	1.4					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\%		F		${ }^{*}$	4
Traffic Vol, veh/h	50	12	250	43	14	549
Future Vol, veh/h	50	12	250	43	14	549
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Sto	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	130	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	54	13	272	47	15	597

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-334	1241	-
HCM Lane V/C Ratio	-	-0.202	0.012	-
HCM Control Delay (s)	-	-	18.5	7.9

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Kra		i	个	F	
Traffic Vol, veh/h	22	25	38	271	563	36
Future Vol, veh/h	22	25	38	271	563	36
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	150	-	-	-
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	27	41	295	612	39

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	935	-	426	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay，s／veh $\quad 18.8$ | |
| Intersection LOS | C |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\leqslant			\uparrow	「	${ }^{*}$	个	「	${ }^{7}$	4	「
Traffic Vol，veh／h	7	35	10	33	18	158	15	149	58	382	221	14
Future Vol，veh／h	7	35	10	33	18	158	15	149	58	382	221	14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	38	11	36	20	172	16	162	63	415	240	15
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.7			12.4			12.5			23.8		
HCM LOS	B			B			B			C		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left，\％	100%	0%	0%	13%	65%	0%	100%	0%	0%
Vol Thru，\％	0%	100%	0%	67%	35%	0%	0%	100%	0%
Vol Right，\％	0%	0%	100%	19%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	15	149	58	52	51	158	382	221	14
LT Vol	15	0	0	7	33	0	382	0	0
Through Vol	0	149	0	35	18	0	0	221	0
RT Vol	0	0	58	10	0	158	0	0	14
Lane Flow Rate	16	162	63	57	55	172	415	240	15
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.035	0.328	0.115	0.124	0.12	0.323	0.784	0.42	0.024
Departure Headway（Hd）	7.802	7.292	6.579	7.874	7.791	6.775	6.898	6.39	5.679
Convergence，Y／N	Yes								
Cap	461	496	547	457	462	534	527	567	634
Service Time	5.52	5.01	4.297	5.595	5.504	4.475	4.598	4.09	3.379
HCM Lane V／C Ratio	0.035	0.327	0.115	0.125	0.119	0.322	0.787	0.423	0.024
HCM Control Delay	10.8	13.5	10.2	11.7	11.6	12.7	30.2	13.6	8.5
HCM Lane LOS	B	B	B	B	B	B	D	B	A
HCM 95th－tile Q	0.1	1.4	0.4	0.4	0.4	1.4	7.2	2.1	0.1

Intersection						
Int Delay, s/veh	4.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		Kr	
Traffic Vol, veh/h	35	33	32	0	0	40
Future Vol, veh/h	35	33	32	0	0	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	45	42	41	0	0	51

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1568	-	-	-1030
HCM Lane V/C Ratio	0.029	-	-	-0.05
HCM Control Delay (s)	7.4	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-

Intersection						
Int Delay, s/veh	4.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Kr	
Traffic Vol, veh/h	0	32	0	2	30	0
Future Vol, veh/h	0	32	0	2	30	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	0	35	0	2	33	0

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	997	-	-	1576	-
HCM Lane V/C Ratio	0.033	-	-	-	-
HCM Control Delay (s)	8.7	-	-	0	-
HCM Lane LOS	A	-	-	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0	-

Intersection						

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	859	-320	-	-
HCM Lane V/C Ratio	0.019	-0.153	-	-
HCM Control Delay (s)	9.3	-18.3	-	-
HCM Lane LOS	A	-	C	-
HCM 95th \%tile Q(veh)	0.1	-	0.5	-

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-260	1129	-
HCM Lane V/C Ratio	-	-0.146	0.005	-
HCM Control Delay (s)	-	-	21.2	8.2

Intersection						

Major/Minor	Minor2	Major1	Major2		
Conflicting Flow All	1252	758	777	0	-
Stage 1	758	-	-	-	-
Stage 2	494	-	-	-	-

	NBL	NBT EBLn1	SBT	SBR
Minor Lane/Major Mvmt	839	-358	-	-
Capacity (veh/h)	0.052	-0.137	-	-
HCM Lane V/C Ratio	9.5	-16.6	-	-
HCM Control Delay (s)	A	-	C	-
HCM Lane LOS	-			
HCM 95th \%tile Q(veh)	0.2	-0.5	-	-

Intersection	
Intersection Delay, s/veh $\quad 30.6$	
Intersection LOS	D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow	F	${ }^{7}$	\uparrow	「	\%	\uparrow	F
Traffic Vol, veh/h	10	35	15	40	15	185	20	230	75	420	300	15
Future Vol, veh/h	10	35	15	40	15	185	20	230	75	420	300	15
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	38	16	43	16	201	22	250	82	457	326	16
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	13.4			15.2			17.6			42.8		
HCM LOS	B			C			C			E		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left, \%	100%	0%	0%	17%	73%	0%	100%	0%	0%
Vol Thru, \%	0%	100%	0%	58%	27%	0%	0%	100%	0%
Vol Right, \%	0%	0%	100%	25%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	20	230	75	60	55	185	420	300	15
LT Vol	20	0	0	10	40	0	420	0	0
Through Vol	0	230	0	35	15	0	0	300	0
RT Vol	0	0	75	15	0	185	0	0	15
Lane Flow Rate	22	250	82	65	60	201	457	326	16
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.051	0.553	0.164	0.161	0.144	0.425	0.959	0.639	0.029
Departure Headway (Hd)	8.473	7.961	7.243	8.866	8.686	7.609	7.562	7.051	6.336
Convergence, Y/N	Yes								
Cap	422	453	494	404	412	473	479	512	564
Service Time	6.235	5.722	5.004	6.644	6.449	5.371	5.315	4.804	4.089
HCM Lane V/C Ratio	0.052	0.552	0.166	0.161	0.146	0.425	0.954	0.637	0.028
HCM Control Delay	11.7	20.2	11.4	13.4	12.9	15.9	59.2	21.5	9.3
HCM Lane LOS	B	C	B	B	B	C	F	C	A
HCM 95th-tile Q	0.2	3.3	0.6	0.6	0.5	2.1	11.9	4.4	0.1

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1615	-	-	-1077
HCM Lane V/C Ratio	0.028	-	-	-0.048
HCM Control Delay (s)	7.3	0	-	-8.5
HCM Lane LOS	A	A	-	-
A				
HCM 95th \%otile Q(veh)	0.1	-	-	-

Intersection						

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0	5	0	10
	5				
Stage 1	-	-	-	-	5
\quad Stage 2	-	-	-	-	5

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	-	-	-	1616	-
HCM Lane V/C Ratio	-	-	-	-	-
HCM Control Delay (s)	0	-	-	0	-
HCM Lane LOS	A	-	-	A	-
HCM 95th \%otile Q(veh)	-	-	-	0	-

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	858	-318	-	-
HCM Lane V/C Ratio	0.019	-0.154	-	-
HCM Control Delay (s)	9.3	-18.4	-	-
HCM Lane LOS	A	-	C	-
HCM 95th \%tile Q(veh)	0.1	-	0.5	-

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow		1	个
Traffic Vol, veh/h	48	17	370	45	13	684
Future Vol, veh/h	48	17	370	45	13	684
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	130	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	52	18	402	49	14	743

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-246	1109	-
HCM Lane V/C Ratio	-	-0.287	0.013	-
HCM Control Delay (s)	-	-25.4	8.3	-
HCM Lane LOS	-	-	D	A
HCM 95th \%tile Q(veh)	-	-	1.1	0

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Kr		F	个	F	
Traffic Vol, veh/h	22	25	40	393	696	37
Future Vol, veh/h	22	25	40	393	696	37
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	150	-	-	-
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	27	43	427	757	40

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	825	-347	-	-
HCM Lane V/C Ratio	0.053	-0.147	-	-
HCM Control Delay (s)	9.6	-17.2	-	-
HCM Lane LOS	A	-	C	-
HCM 95th \%tile Q(veh)	0.2	-	0.5	-

Intersection		
Intersection Delay，s／veh	33.7	
Intersection LOS	D	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\＄	「	${ }^{7}$	4	「	\％	4	「
Traffic Vol，veh／h	10	35	15	40	15	194	20	239	75	428	308	15
Future Vol，veh／h	10	35	15	40	15	194	20	239	75	428	308	15
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	38	16	43	16	211	22	260	82	465	335	16
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	13.6			15.9			18.8			47.8		
HCM LOS	B			C			C			E		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left，\％	100%	0%	0%	17%	73%	0%	100%	0%	0%
Vol Thru，\％	0%	100%	0%	58%	27%	0%	0%	100%	0%
Vol Right，\％	0%	0%	100%	25%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	20	239	75	60	55	194	428	308	15
LT Vol	20	0	0	10	40	0	428	0	0
Through Vol	0	239	0	35	15	0	0	308	0
RT Vol	0	0	75	15	0	194	0	0	15
Lane Flow Rate	22	260	82	65	60	211	465	335	16
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.052	0.582	0.166	0.163	0.146	0.452	0.99	0.665	0.029
Departure Headway（Hd）	8.582	8.069	7.35	9.017	8.788	7.71	7.662	7.151	6.435
Convergence，Y／N	Yes								
Cap	417	447	487	397	408	466	475	506	555
Service Time	6.349	5.835	5.116	6.802	6.554	5.475	5.421	4.909	4.193
HCM Lane VIC Ratio	0.053	0.582	0.168	0.164	0.147	0.453	0.979	0.662	0.029
HCM Control Delay	11.8	21.6	11.6	13.6	13.1	16.7	66.9	23.1	9.4
HCM Lane LOS	B	C	B	B	B	C	F	C	A
HCM 95th－tile Q	0.2	3.6	0.6	0.6	0.5	2.3	12.9	4.8	0.1

Intersection						
Int Delay, s/veh	4.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		Kr	
Traffic Vol, veh/h	35	38	35	0	0	40
Future Vol, veh/h	35	38	35	0	0	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	45	49	45	0	0	51

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1563	-	-	-1025
HCM Lane V/C Ratio	0.029	-	-	-0.05
HCM Control Delay (s)	7.4	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-

Intersection						
Int Delay, s/veh	3.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Kr	
Traffic Vol, veh/h	5	33	0	5	30	0
Future Vol, veh/h	5	33	0	5	30	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	5	36	0	5	33	0

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	987	-	-	1568	-
HCM Lane V/C Ratio	0.033	-	-	-	-
HCM Control Delay (s)	8.8	-	-	0	-
HCM Lane LOS	A	-	-	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0	-

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - ST FLORIAN COURT : EXISTING

PM (•) : MAJOR 818 MINOR 3

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - NORTHSIDE DR : EXISTING

PM (•) : MAJOR 834 MINOR 32

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - TIMBERLINE COMMERCIAL DRIVEWAY : EXISTING
PM (•) : MAJOR 872 MINOR 45

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

PM (•) : MAJOR 814 MINOR 200

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

NORTHSIDE DR - USPS DRIVEWAY : EXISTING
PM (•) : MAJOR 40
MINOR 38

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - ST FLORIAN COURT : EXISTING PLUS PROJECT
PM (•) : MAJOR 822 MINOR 3

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - NORTHSIDE DR : EXISTING PLUS PROJECT
PM (॰) : MAJOR 854 MINOR 60

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - SR 193 : EXISTING PLUS PROJECT

PM (•) : MAJOR 839 MINOR 209

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

NORTHSIDE DR - USPS DRIVEWAY : EXISTING PLUS PROJECT
PM (•) : MAJOR 96 MINOR 40

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

NORTHSIDE DR - PROJECT DRIVEWAY : EXISTING PLUS PROJECT
PM (•): MAJOR 75 MINOR 30

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - ST FLORIAN COURT : CUMULATIVE 2040 BASE
PM (॰) : MAJOR 1075 MINOR 45

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - NORTHSIDE DR : CUMULATIVE 2040 BASE
PM (•): MAJOR 1090 MINOR 35

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - SR 193 : CUMULATIVE 2040 BASE

PM (•) : MAJOR 1060 MINOR 240

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

NORTHSIDE DR - USPS DRIVEWAY : CUMULATIVE 2040 BASE PM (\bullet) : MAJOR 45 MINOR 40

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - NORTHSIDE DR : CUMULATIVE PLUS PROJECT
PM (॰): MAJOR 1110 MINOR 63

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

SR 49 - TIMBERLINE COMMERCIAL DRIVEWAY : CUMULATIVE PLUS PROJECT PM (•): MAJOR 1164 MINOR 45

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Delivery Truck Route-Cool Dollar General

ADDENDUM TO TRANSPORTATION IMPACT ANALYSIS

FOR
COOL DOLLAR GENERAL STORE
El Dorado County, California

Prepared For:
WoodCrest Companies
1410 Main Street, Suite C
Ramona, CA 92065

Prepared By:
KD Anderson \& Associates, Inc.
3853 Taylor Road, Suite G
Loomis, CA 95650
(916) 660-1555

September 16, 2020

Job No. 9470-02

Exhibit L

ADDENDUM TO TRANSPORTATION IMPACT ANALYSIS FOR COOL DOLLAR GENERAL STORE
 El Dorado County, California

TABLE OF CONTENTS
INTRODUCTION 1
Project Description 1
EXISTING SETTING - SATURDAY 4
Study Area Intersections 4
Existing Saturday Traffic Volumes / Levels of Service 4
Pedestrian / Bicycle Activity 8
Collision History 8
PROJECT CHARACTERISTICS 9
Trip Generation 9
Vehicle Trip Distribution / Assignment 10
PROJECT TRAFFIC EFFECTS 11
Existing Plus Project Saturday Traffic Conditions and Levels of Service 11
Project Impacts to Alternative Transportation Modes 14
Site Access 14
SUMMARY AND CONCLUSIONS 16
APPENDIX 17

ADDENDUM TO TRANSPORTATION IMPACT ANALYSIS FOR COOL DOLLAR GENERAL STORE
 El Dorado County, California

INTRODUCTION

This report summarizes a supplemental analysis of the traffic effects associated with a Dollar General Store proposed in the rural El Dorado County community of Cool, California. The information herein follows up on a transportation impact analysis prepared for the project on March 9, 2020 to address summer weekend conditions with the project. To assess traffic effects, new Saturday summer traffic counts have been made and adjusted based on available data to account for the effects of COVID-19 on regional travel. The characteristics of the proposed project have been determined, including estimated peak trip generation, and conditions with and without the Dollar General Store have been assessed based on operating Levels of Service and peak period queues.

Project Description

The proposed project remains a 9.1 ksf Dollar General Store located on an approximately 1.68 acre site on the south side of Northside Drive about 190 feet east of SR 49 (centerline to centerline). The project will include development of 31 parking spaces per El Dorado County Zoning Ordinance requirements. Access to the site will be provided via a single driveway on Northside Drive. The driveway is about 35 feet from the USPS Driveway to the west and is about 655 feet from the Cool Boat and RV Storage across Northside Drive to the east. Figures 1 and 2 display the regional location of the project and proposed site plan, respectively.

EXISTING SETTING - SATURDAY

The previous report described the facilities that are available today serving vehicular, pedestrian and bicycle traffic and transit users in the Cool area of El Dorado County, as well as policies that guide consideration of traffic effects. Key information is presented again.

Study Area Intersections

The quality of traffic flow is often governed by the operation of key intersections. The following intersections have been evaluated in this addendum.

The State Route 49 / Northside Drive intersection is a "Tee" intersection controlled by a westbound stop sign on Northside Drive. A Two-Way-Left-Turn-Lane is present on SR 49. The Northside Drive approach is a single lane, and there are no crosswalks present.

The State Route 49 / State Route 193 intersection is a four-way intersection controlled by an all-way stop with an overhead flasher. SR 49 has separate left turn lanes on each approach. A southbound right turn lane exists, and the northbound thru lane is wide enough to allow right turns outside of the queue of northbound traffic. The SR 193 westbound approach is wide enough to act as a combined left-thru lane and a separate right turn lane, and the eastbound leg is a single lane private drive. Crosswalks exist on the south and east side of the intersection.

The USPS Driveway / Northside Drive intersection is a "Tee" controlled by a stop sign on the southbound USPS Driveway. There are no auxiliary lanes or crosswalks present.

Existing Saturday Traffic Volumes / Levels of Service

Traffic Volume Counts. New Saturday traffic counts were made for this study on August 29, 2020 from noon to 2:00 p.m. at these locations:

- SR 49 / SR 193
- SR 49 / Northside Drive

They represent the main intersection in Cool and provide data relating to the project's access.
Because the exact effects of COVID-19 on regional travel are uncertain, an appliable method was used to adjust these counts to "normal" summer weekend conditions and to validate the result. A cell-phone based "Big Data" service (i.e., Streetlight) was employed. Streetlight aggregates continually recorded cell phone based data (pings) and uses algorithms to equate that data to automobiles based on available traffic volume data. In this case, data was collected at the SR 49 / SR 193 intersection for Saturdays in July-August from 11:00 a.m. to 5:00 p.m. Data was assembled for 2019 (No COVID-19) and for 2020 during this time period.

To validate this information the average total traffic volume reported by Streetlight for the noon2:00 p.m. period was found for summer 2020 conditions (1,828 vehicles) and compared to that in the August 29, 2020 two-hour count (1,778 vehicles) as shown in Table 1. The difference of 50 vehicles, or 2.8%, is not significant.

TABLE 1 SATURDAY NOON TO 2:00 TRAFFIC VOLUMES AT SR 49 / SR 193 INTERSECTION (VEHICLES)					
August 29, 2020 count	Average July- August 2020	Difference (count minus average)	Average July- August 2019	Difference (2019-2020)	Adjustment Factor Applied
1,778	1,828	$50(2.6 \%)$	1,971	$143(8 \%)$	10%

Comparison of Year 2019 and Year 2020 two-hour data indicated that last year's average volumes were roughly 8% greater than those developed for 2020. To provide a conservative estimate the 2020 Saturday peak hour counts at all locations were increased by 10% to approximate regular conditions. The resulting volumes are noted in Figure 3. This data has been used to determine the operating Level of Service (LOS) at each intersection, to assess queueing and to evaluate the status of traffic signal warrants.

Level of Service at Intersections. Levels of Service were calculated using the methods presented in the Highway Capacity Manual, $6^{\text {th }}$ Edition (HCM 6 Ed). Intersection Levels of Service were calculated using SYNCHRO 10.0 software. For intersections controlled by side street stop signs, the reported Level of Service reflects the "worst case" movement, which is typically those motorists waiting to enter the main street.

As indicated in Table 2, on Saturday each intersection delivers a peak hour Level of Service that satisfies minimum El Dorado County standards. As indicated, the Levels of Service calculated for Saturday conditions are similar to or slightly better than those presented for the weekday p.m. peak hour. Peak hour traffic signal warrants are satisfied at the SR 49 / SR 193 intersection based on Saturday data.

EXISTING SATURDAY TRAFFIC VOLUMES
AND LANE CONFIGURATIONS
KD Anderson \& Associates, Inc.
Transportation Engineers

TABLE 2 EXISTING INTERSECTION LEVELS OF SERVICE						
Intersection	Control	Weekday PM Peak Hour		Saturday Peak Hour (12:30 to 1:30 pm)		Peak Hour Signal Warrant Met?*
		Average Delay (veh/sec)	LOS	Average Delay (sec/veh)	LOS	
1. State Route 49 / Northside Dr Southbound left turn Westbound approach	WB Stop	$\begin{gathered} 7.9 \\ 16.3 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 8.1 \\ 16.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	No
2. State Route 49 / State Route 193	AWS	17.7	C	13.9	B	Yes
3. USPS Driveway / Northside Dr Southbound approach Eastbound approach	SB Stop	$\begin{aligned} & 8.5 \\ & 7.1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	7.2	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	No
* CA MUTCD Peak Hour Signal Warrant, Figure 4C-3. AWS is All-Way Stop Control						

95th Percentile Queues. Table 3 identifies the 95th percentile queues occurring during the p.m. peak hour at the SR 49 / SR 193 intersection. These values are a byproduct of HCM LOS analysis. As indicated, all estimated queues can be accommodated within the available storage, and no improvements are currently needed.

TABLE 3 EXISTING INTERSECTION PEAK HOUR QUEUES							
Intersection	Lane	Storage (feet)	Weekday PM Peak Hour		Saturday Peak Hour		Storage Adequate?
			Volume (vph)	$95^{\text {th }} \%$ Queue (feet)	$\begin{array}{\|c} \begin{array}{c} \text { Volume } \\ (\mathbf{v p h}) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{9 5}^{\text {th }} \% \\ & \text { Queue } \\ & \text { (feet) } \end{aligned}$	
State Route 49 / SR 193	SB left	$200{ }^{1}$	374	170	243	75	Yes
	NB left	$150{ }^{1}$	15	<25	21	<25	Yes
	WB approach	unlimited	200	40	304	70	Yes
${ }^{1}$ lane continues as TWLT lane							

Roadway Segment Level of Service. Table 4 identifies the current operating Level of Service on the roadways in the vicinity of the project. As shown, the roadway segments in this area operate at LOS D during the peak hour on Saturday. Conditions are similar to but in some cases better than those during the weekday p.m. peak hour.

TABLE 4 EXISTING ROADWAY SEGMENT LEVELS OF SERVICE										
Road	Location	Direction	Weekday PM Peak Hour				Saturday Peak Hour			
			Volume (vph)	$\begin{gathered} \text { ATS } \\ (\mathbf{m p h}) \end{gathered}$	$\begin{gathered} \text { PTSF } \\ (\%) \end{gathered}$	Level of Service	Volume (vph)	$\begin{gathered} \text { ATS } \\ (\mathbf{m p h}) \end{gathered}$	$\begin{gathered} \text { PTSF } \\ (\%) \end{gathered}$	Level of Service
SR 49	North of SR 193	NB	257	40.7	53.9	D	387	40.2	68.7	D
		SB	561	39.5	77.4	E	454	40.4	74.3	D
	South of SR 193	NB	213	42.1	58.3	D	215	42.1	57.9	D
		SB	256	41.8	65.8	D	261	41.8	65.9	D
SR 193	East of SR 49	EB	467	40.3	72.3	D	308	41.3	66.5	D
		WB	200	41.6	47.0	D	304	41.3	65.3	D

Pedestrian / Bicycle Activity

The number of pedestrians and bicyclists at the SR 49 / SR 193 intersection was determined as part of the Saturday traffic counts conducted in August 2020. During the two-hour period from the noon to $2: 00$ period a total of 6 pedestrian crossings were recorded. There were two pedestrians in each direction on the south leg of the intersection and 2 pedestrians who walked southbound on the west side of the intersection.

The number of bicyclists was also determined at that time. A total of 4 bicyclists entered the intersection traveling eastbound and 2 entered traveling westbound.

Collision History

This evaluation was also presented in the original report. Traffic collision information was obtained for locations on SR 49 for the period of January 1, 2016 to December 31, 2018. During that time period a total of one collision was reported for the segment from 300 feet south of SR 193 to 300 feet north of St Florian Court. One rear-end collision occurred 65 feet south of SR 193. The statewide average collision rate for rural three-lane roads (i.e., with TWLT lane) is 0.94 per Million Vehicle Miles (MVM). Over three years this $1 / 4$ mile long segment experienced a rate of 0.42 per MVM.

PROJECT CHARACTERISTICS

Trip Generation

Trip Generation Rates. The Institute of Transportation Engineers (ITE) publication "Trip Generation, $10^{\text {th }}$ Edition" provides information for the use most similar to Dollar General Store (i.e., "Variety Store" (Code 814)). Table 5 identifies the trip generation rates reported by ITE for this use.

No specific rates are available for Saturdays. Information is available for the hour with the highest volume of project weekday traffic, which is called the "peak hour of the generator". This rate has been employed to estimate the project's traffic on the Saturday peak hour, and the applicable rate is noted in Table 5.

TABLE 5 TRIP GENERATION RATES											
Land Use / Source	Unit	Daily	Peak Hour of Adjacent Street						PM Peak Hour of Generator		
			AM Peak Hour			PM Peak Hour					
			In	Out	Total	In	Out	Total	In	Out	Total
Variety Store (814)	ksf	63.47	57\%	43\%	3.18	52\%	48\%	6.82	50\%	50\%	7.42
Dollar General Store	9.1 ksf	578	16	13	29	32	30	62	34	34	68
Pass-by Trips	34\%	<196>	<5>	<5>	<10>	<10>	<10>	<20>	<12>	<12>	<24>
Net New Trips		382	11	8	19	22	20	42	22	22	44

Source: ITE Trip Generation, $10^{\text {th }}$ Edition

Trip Generation Forecasts. Table 5 displays the p.m. peak hour of the generator trip generation forecasts for the 9.1 ksf Dollar General Store. The project would generate 68 p.m. peak hour trips at its driveway. A portion of the traffic drawn to these stores would be drawn from the stream of traffic already passing the site. The ITE Trip Generation Handbook, $3^{\text {rd }}$ Edition notes that 34% of the weekday p.m. trips are "pass-by", and this rate has been assumed for Saturday.

As noted in Table 5, the project is expected to generate 44 "new" trips during the p.m. peak hour of the generator that is being used for this analysis of Saturday conditions.

Vehicle Trip Distribution / Assignment

The distribution of project traffic on Saturday was assumed to be consistent with the assumption made for weekdays that was used in the original report. As noted in Table 6, assuming a primary trade area that extends 1-2 miles from the site, the new trips attracted to the site will arrive primarily from the south along SR 49 and east along SR 193, with lesser shares arriving from the north and from the businesses that already exist along SR 49. Pass-by trips will be drawn from passing traffic on SR 49 in general proportion to the current peak hour volumes from each direction.

TARECTIONAL TRIP DISTRIBUTION (NEW TRIPS)			

Using the trip generation and distribution assumptions described above, the trips generated by the proposed project were assigned to the study area street system.

PROJECT TRAFFIC EFFECTS

Existing Plus Project Saturday Traffic Conditions and Levels of Service

Figure 4 superimposes project trips onto the current background Saturday traffic volumes to create the "Existing plus Project" condition. Subsequent tables compare the "Existing" and "Existing plus Project" Levels of Service.

Project Traffic Impacts to Level of Service at Intersections. As shown in Table 7, because the amount of traffic projected to be generated by the project is relatively low, the addition of project traffic would not appreciably increase the length of delays already occurring at study intersections, and the project does not result in any change to the overall Level of Service at each location. Levels of Service will remain within adopted minimum standards of El Dorado County at each location.

As noted, to provide a "worst case" assessment, the Level of Service at the site access has been calculated assuming the Dollar General Store driveway and the USPS driveway are combined as one consolidated intersection.

Traffic Signal Warrants. The volume of traffic occurring at each intersection with development of the project was again compared to the CA MUTCD peak hour signal warrant thresholds. Traffic signals continue to be warranted at SR 49 / SR 193 with the project. The SR 193 TCR suggests a roundabout will someday be installed at this location, but no funding is identified. Currently, improvements to this intersection are not included in El Dorado County's regional traffic impact fee program.

95th Percentile Queues. Table 8 identifies the 95th percentile queues occurring during the Saturday peak hour at the SR 49 / SR 193 intersection if the project is developed. As indicated, the queue in the southbound left turn lane may increase by about 5 feet as a result of the project. This queue will continue to be accommodated within the limits of the painted left turn lane. No improvements are needed.

Roadway Segments. As noted in Table 9, the project will add traffic to the state highway segments in this area. However, the volume of traffic is too small to have an appreciable effect on the performance of roadway segments. All segments will continue to operate at LOS D, which satisfies the General Plan standard.

TABLE 7 EXISTING PLUS PROJECT INTERSECTION LEVELS OF SERVICE										
	Control	PM Peak Hour				Saturday Peak Hour				Peak Hour Signal Warrant Met?
		Existing No Project		Existing Plus Project		Existing No Project		Existing Plus Project		
Intersection		LOS	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	Average Delay (sec/veh)	LOS	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	
2. State Route 49 / Northside Dr Southbound left turn Westbound approach	WB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 7.9 \\ 16.3 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 7.9 \\ 18.5 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 8.1 \\ 16.0 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 8.2 \\ 16.9 \end{gathered}$	No
4. State Route 49 / State Route 193	AWS	C	17.7	C	18.8	B	13.9	B	14.5	Yes
6. Northside Dr / USPS / Access Southbound approach Eastbound approach Northbound approach	SB/NB Stop	A A	$\begin{gathered} 8.5 \\ 7.1 \\ -- \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.3 \\ & 9.9 \end{aligned}$	A	$\begin{gathered} \text {-- } \\ 7.2 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 8.4 \\ & 7.2 \\ & 9.1 \end{aligned}$	No

TABLE 8
EXISTING PLUS PROJECT SATURDAY INTERSECTION PEAK HOUR QUEUES

Intersection	Lane	Storage (feet)	Saturday Peak Hour					
			Existing No Project		Existing Plus Project			
			Volume (vph)	$\begin{gathered} \mathbf{9 5}^{\text {th }} \% \text { Queue } \\ \text { (feet) } \\ \hline \end{gathered}$	Volume (vph)		95th \% Queue (feet)	Storage Adequate?
					Project Only	Total		
State Route 49 / SR 193	SB left	200^{1}	243	75	9	252	80	No
	NB left	$150{ }^{1}$	21	<25	0	21	<25	Yes
	WB approach	unlimited	228	55	9	237	60	Yes
${ }^{1}$ lane continues as TWLT lane								

TABLE 9
EXISTING PLUS PROJECT ROADWAY SEGMENT LEVELS OF SERVICE

Road	Location	Direction	Saturday Hour							
			Existing				Plus Project			
			Volume (vph)	$\begin{gathered} \text { ATS } \\ (\mathbf{m p h}) \end{gathered}$	$\begin{gathered} \text { PTSF } \\ (\%) \end{gathered}$	LOS	Volume added (vph)	$\begin{gathered} \text { ATS } \\ \text { (mph) } \end{gathered}$	$\begin{gathered} \text { PTSF } \\ (\%) \end{gathered}$	LOS
SR 49	North of SR 193 beyond Northside Dr	Northbound	387	40.2	68.7	D	2	40.2	68.6	D
		Southbound	454	40.4	74.3	D	2	40.4	74.4	D
	South of SR 193	Northbound	215	42.1	57.9	D	9	42.0	58.3	D
		Southbound	261	41.8	65.9	D	9	41.7	65.1	D
SR 193	East of SR 49	Eastbound	308	41.3	66.5	D	9	41.4	65.5	D
		Westbound	304	41.3	65.3	D	9	41.2	66.7	D

Project Impacts to Alternative Transportation Modes

Development of the proposed Dollar General Store may incrementally contribute to the demand for facilities to serve pedestrians and cyclists in this area of El Dorado County, but this demand is expected to be relatively minor based on current activity.

Pedestrian Impacts. Some employees or customers of this project may elect to walk to other commercial uses in the area. Based on the results of Saturday traffic counts current midday pedestrian activity between uses in this area is low. Similarly, the project is not expected to result in appreciable numbers of pedestrians to and from the site.

Bicycle Impacts. While the use of bicycles may be an option for employees or customers to get to the site, based on current Saturday bicycle counts in the area the number of cyclists generated by this use is likely to be low. The number of cyclists associated with this project is not likely to create any appreciable safety impacts on SR 49 where the paved shoulder is already available to provide access to the project.

Site Access

Throat Depth. Access to the site is proposed via a driveway on the south side of Northside Drive. The driveway is 40 feet wide. The main parking aisle is separated from Northside Drive by about 40 feet of throat. Two waiting vehicles can queue prior to blocking access to those parking spaces. This layout is expected to operate satisfactorily given the low traffic volumes projected to be generated by the site.

Proximity of Driveways - Safety. The project driveway and USPS driveway are slightly offset. While offset driveway can sometimes cause conflicts between turning vehicles, the characteristics of the two driveways and the volume of traffic anticipated combine to preclude typical concerns. The Post Office driveway is slightly west of the Dollar General driveway. In this alignment the typical turning conflict would have been between outbound left turns from each driveway who might meet between the intersections. In this case because Northside Drive is a cul-de-sac, all of the traffic observed leaving the Post Office did so by turning right to go back to SR 49. The vehicles would not occupy the same space as left turns from the Dollar General, and no conflict occurs. While an occasional Post Office customer may turn left to visit the Dollar General, the number of potential conflicts between Dollar General traffic and these left turns will be minimal. Sight lines between the two driveways are not obstructed. The anticipated operation of the two driveways will be safe, and no change to the design is warranted.

EXISTING PLUS PROJECT SATURDAY TRAFFIC VOLUMES KD Anderson \& Associates, Inc. Transportation Engineers

SUMMARY AND CONCLUSIONS

This supplemental report documents KD Anderson \& Associates' analysis of the Saturday traffic effects of a Dollar General Store on Northside Drive in El Dorado County, California. The analysis identified current summer Saturday conditions based on new traffic count data that was adjusted to reflect the effects of COVID-19. To assess project effects, the trip generation associated with the highest volume hour rate for the project was determined and superimposed onto the Saturday condition.

Saturday Peak Hour Traffic. Traffic volume data was collected for the midday peak traffic period at the SR 49 / SR 193 intersection and for the SR 49/ Northside Drive intersection. That data was adjusted to reflect summer 2019 conditions using "big data' derived from cell phone GIS activity. The resulting Level of Service and queuing analyses indicated that summer midday Saturday conditions are similar to but no worse than the weekday p.m. peak hour conditions identified in the original report.

Weekend Peak Hour Trip Generation. The ITE Trip Generation Manual, $10^{\text {th }}$ Edition was reviewed to identify Saturday trip generation rates for this use. Because no specific Saturday data was available, the weekday rates associated with the greatest amount of project traffic (i.e., peak hour of generator) were employed. Under these assumptions the Dollar General Store is expected to generate a total of 68 trips during the peak hour. After discounting for pass-by trips already occurring on SR 49 adjacent to the site, the project is projected to generate 44 new primary trips in the peak hour.

Existing Plus Project Saturday Traffic Conditions. Development of the project alone does not result in a significant effect on traffic based on the criteria adopted by El Dorado County. No changes to existing Saturday Levels of Service are projected with development of the site. The Level of Service at the site access and at the SR 49 / Northside Drive intersection will be LOS C or better. Traffic signal warrants are met with and without the project at the SR 49/ SR 193 intersection. Peak period queues with and without the project can be accommodated within existing turn lanes. The current Saturday peak hour roadway segment Levels of Service on state highways near the project will not change as a result of the project.

Safety. Current pedestrian and bicycle volumes were monitored during Saturday midday traffic counts, and use of both transportation modes at the SR 49 / SR 193 intersection are very low (i.e., fewer than 6 pedestrians or 4 bicyclists over two midday hours). As is the case today, any pedestrians for cyclists generated by the Dollar General Store will be able to use the available shoulder on SR 49 and use the crosswalks at the SR 49 / SR 193 intersection.

APPENDIX

(Traffic Counts, LOS Calculations)

SR 49 \& Northside Dr

Peak Hour Turning Movement Count

National Data \& Surveying Services
 City: Cool

Project ID: 20-070147-001
Control: 1 Way Stop (WB)

NS/EW Streets:	SR 49				SR 49				Northside Dr				Northside Dr				
NOON	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
12:00 PM	0	70	3	0	0	88	0	0	0	0	0	0	2	0	2	0	165
12:15 PM	0	84	4	0	5	65	0	0	0	0	0	0	6	0	2	0	166
12:30 PM	0	85	6	0	1	85	0	0	0	0	0	0	9	0	0	0	186
12:45 PM	0	77	1	0	0	85	0	0	0	0	0	0	1	0	0	0	164
1:00 PM	0	83	3	0	1	104	0	0	0	0	0	0	4	0	1	0	196
1:15 PM	0	80	1	0	0	87	0	0	0	0	0	0	1	0	0	0	169
1:30 PM	0	70	3	0	0	80	0	0	0	0	0	0	2	0	1	0	156
1:45 PM	0	73	5	0	0	79	0	0	0	0	0	0	3	0	1	0	161
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES:	0	622	26	0	7	673	0	0	0	0	0	0	28	0	7	0	1363
APPROACH \%'s :	0.00\%	95.99\%	4.01\%	0.00\%	1.03\%	98.97\%	0.00\%	0.00\%					80.00\%	0.00\%	20.00\%	0.00\%	
PEAK HR :	12:30 PM - 01:30 PM				$\begin{gathered} 2 \\ 0.500 \end{gathered}$	361	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 15 \\ 0.417 \end{gathered}$	00.0000	10.250	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 715 \\ 0.912 \end{gathered}$					
PEAK HR VOL :	0	325	11	0													
PEAK HR FACTOR :	0.000	0.956	0.458	0.000		0.868											
	0.923					0.864											

National Data \& Surveying Services
 Intersection Turning Movement Count

Location: SR 49 \& Northside Dr City: Cool Control: 1 Way Stop (WB)														ject ID: Date:	$\begin{aligned} & 0-070147 \\ & / 29 / 2020 \end{aligned}$		
	Cars																
NS/EW Streets:	SR 49				SR 49				Northside Dr				Northside Dr				
NOON	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0NL		0	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \text { SL } \end{gathered}$	$\begin{gathered} 0 \\ \text { ST } \end{gathered}$	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 0 \\ E L \end{gathered}$	$\begin{gathered} 0 \\ \text { ET } \end{gathered}$	$\begin{gathered} 0 \\ E R \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 0 \\ \text { WL } \end{gathered}$	OT	$\begin{gathered} 0 \\ \text { WR } \\ \hline \end{gathered}$	WU	TOTAL
			NR														
12:00 PM	0	69	3	0	0	88	0	0	0	0	0	0	2	0	2	0	164
12:15 PM	0	82	4	0	5	65	0	0	0	0	0	0	6	0	2	0	164
12:30 PM	0	85	6	0	1	84	0	0	0	0	0	0	9	0	0	0	185
12:45 PM	0	77	1	0	0	85	0	0	0	0	0	0	1	0	0	0	164
1:00 PM	0	83	3	0	1	104	0	0	0	0	0	0	4	0	1	0	196
1:15 PM	0	79	1	0	0	87	0	0	0	0	0	0	1	0	0	0	168
1:30 PM	0	70	3	0	0	79	0	0	0	0	0	0	2	0	1	0	155
1:45 PM	0	73	5	0	0	78	0	0	0	0	0	0	3	0	1	0	160
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	618	26	0	7	670	0	0	0	0	0	0	28	0	7	0	1356
APPROACH \%'s :	0.00\%	95.96\%	4.04\%	0.00\%	1.03\%	98.97\%	0.00\%	0.00\%					80.00\%	0.00\%	20.00\%	0.00\%	
PEAK HR :		2:30 PM	1:30 PM														TOTAL
PEAK HR VOL :	0	324	11	0	2	360	0	0	0	0	0	0	15	0	1	0	713
PEAK HR FACTOR :	0.00	0.953	0.458	0.000	0.500	0.865	0.000	0.000	0.000	0.000	0.000	0.000	0.417	0.000	0.250	0.000	
		0.9				0.8								0.4			0.909

National Data \& Surveying Services

 Intersection Turning Movement Count

 Intersection Turning Movement Count}

National Data \& Surveying Services
 Intersection Turning Movement Count

National Data \& Surveying Services

Intersection Turning Movement Count
 Location: SR 49 \& Northside Dr
 Project ID: 20-070147-001

 City: Cool Date: 8/29/2020| Pedestrians (Crosswalks) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NS/EW Streets: | SR 49 | | SR 49 | | Northside Dr | | Northside Dr | | |
| NOQN | NORTH LEG | | SOUTH LEG | | EAST LEG | | WEST LEG | | |
| NOON | EB | WB | EB | WB | NB | SB | NB | SB | TOTAL |
| 12:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12:30 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12:45 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1:30 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1:45 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | EB | WB | EB | WB | NB | SB | NB | SB | TOTAL |
| TOTAL VOLUMES : APPROACH \%'s: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PEAK HR : | 12:30 | 30 PM | | | | | | | TOTAL |
| PEAK HR VOL: PEAK HR FACTOR : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SR 49 \& SR 193/Georgetown Rd

Peak Hour Turning Movement Count

Total

NS/EW Streets:	SR 49				SR 49				SR 193/Georgetown Rd				SR 193/Georgetown Rd				
NOON	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
12:00 PM	5	29	9	0	57	41	4	1	3	12	3	0	9	2	46	0	221
12:15 PM	6	40	12	0	44	42	0	2	1	3	4	0	10	5	54	0	223
12:30 PM	7	37	7	0	50	43	2	0	0	7	2	0	13	6	58	0	232
12:45 PM	5	33	5	0	50	48	3	0	2	5	3	0	11	7	47	0	219
1:00 PM	6	41	9	0	65	53	0	0	0	8	0	0	12	3	47	0	244
1:15 PM	1	30	14	0	56	39	4	1	2	4	3	0	10	7	55	0	226
1:30 PM	3	22	16	0	49	34	1	2	0	5	4	0	10	6	48	0	200
1:45 PM	2	37	14	0	54	35	2	0	1	4	1	0	12	2	48	1	213
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	35	269	86	0	425	335	16	6	9	48	20	0	87	38	403	1	1778
APPROACH \%'s :	8.97\%	68.97\%	22.05\%	0.00\%	54.35\%	42.84\%	2.05\%	0.77\%	11.69\%	62.34\%	25.97\%	0.00\%	16.45\%	7.18\%	76.18\%	0.19\%	
PEAK HR :	12:30 PM - 01:30 PM				$\begin{aligned} & 221 \\ & 0.850 \end{aligned}$	1830.8630	$\begin{gathered} 9 \\ 0.563 \\ 7 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{gathered} 4 \\ 0.500 \end{gathered}$	$\begin{gathered} 24 \\ 0.750 \\ 0.9 \end{gathered}$	$\begin{gathered} 8 \\ 0.667 \\ 0 . \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 46 \\ 0.885 \end{gathered}$	230.8210.8	$\begin{gathered} 207 \\ 0.892 \\ \hline 6 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	19	141	35	0													921
PEAK HR FACTOR :	0.679	0.860	0.625	0.000													
		0.8															0.944

National Data \& Surveying Services
 Intersection Turning Movement Count

National Data \& Surveying Services
 Intersection Turning Movement Count

National Data \& Surveying Services
 Intersection Turning Movement Count

National Data \& Surveying Services Intersection Turning Movement Count

Location: SR 49 \& SR 193/Georgetown Rd City: Cool

Project ID: 20-070147-002
Date: 8/29/2020

Pedestrians (Crosswalks)									
NS/EW Streets:	SR 49		SR 49		SR 193/Georgetown Rd		SR 193/Georgetown Rd		
NOON	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
12:00 PM	0	0	0	0	0	0	0	0	0
12:15 PM	0	0	0	0	0	0	0	0	0
12:30 PM	0	0	0	0	0	0	0	0	0
12:45 PM	0	0	2	2	0	0	0	2	6
1:00 PM	0	0	0	0	0	0	0	0	0
1:15 PM	0	0	0	0	0	0	0	0	0
1:30 PM	0	0	0	0	0	0	0	0	0
1:45 PM	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES : APPROACH \%'s :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	0	0	$\stackrel{2}{50}$		0	0	0	2	6
			50.00\%	50.00%			0.00%	100.00%	
PEAK HR :	12:30 PM - 01:30 PM		$\begin{gathered} 2 \\ 0.250 \end{gathered}$	$\begin{gathered} 2 \\ 0.250 \end{gathered}$	0	0	0		TOTAL
PEAK HR VOL:	0	0							6
PEAK HR FACTOR :									
			0.250						0.250

$K D A$

Day Type
2: Weekend Day (Sa-Sa)
TURNING MOVEMENT COUNTS - SATURDAY 2018_2019-JULY AUGUST

TURNING MOVEMENT PERCENTAGE

	Cool D/W West Leg EB In			SR 193 East Leg WB Inbound			SR 49 South Leg NB Inbound			SR 49 North Leg SB Inbound		
	EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right
Day Part												
0: All Day (12am-12am)	14\%	59\%	27\%	16\%	11\%	72\%	13\%	72\%	16\%	56\%	43\%	1\%
1: 11am (11am-12noon)	0\%	100\%	0\%	19\%	15\%	65\%	19\%	63\%	18\%	45\%	55\%	0\%
2: 12pm (12noon-1pm)	0\%	100\%	0\%	17\%	7\%	76\%	4\%	72\%	24\%	46\%	54\%	0\%
3: 1 pm (1pm-2pm)	21\%	70\%	10\%	15\%	14\%	70\%	14\%	73\%	13\%	57\%	43\%	0\%
4: 2 pm (2pm-3pm)	0\%	46\%	54\%	13\%	13\%	74\%	8\%	81\%	11\%	54\%	46\%	0\%
5: 3pm (3pm-4pm)	0\%	57\%	43\%	13\%	11\%	75\%	4\%	82\%	14\%	58\%	42\%	0\%
6: 4pm (4pm-5pm)	0\%	30\%	70\%	15\%	11\%	74\%	5\%	75\%	20\%	59\%	41\%	0\%
7: 5pm (5pm-6pm)	0\%	100\%	0\%	18\%	6\%	76\%	7\%	71\%	22\%	64\%	36\%	0\%
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-

Day Type
2: Weekend Day (Sa-Sa)
turning Movement counts - saturday 2020 - JuLY august

963
1027

TURNING MOVEMENT PERCENTAGE

$K D A$

Intersection						

Major/Minor	Minor1	Major1	Major2		
Conflictictig Flow All	832	396	0	0	402
	0				
Stage 1	396	-	-	-	-
Stage 2	436	-	-	-	-

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-347	1157	-
HCM Lane V/C Ratio	-	-0.056	0.002	-
HCM Control Delay (s)	-	-	16	8.1
HCM Lane LOS	-	-	C	A
HCM 95th \%tile Q(veh)	-	-	0.2	0

Intersection		
Intersection Delay，s／veh	13.9	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			＊	「	＊	4	「	\％	4	「
Traffic Vol，veh／h	4	26	9	51	25	228	21	155	39	243	201	10
Future Vol，veh／h	4	26	9	51	25	228	21	155	39	243	201	10
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	28	10	55	27	248	23	168	42	264	218	11
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.1			13.1			12.4			15.3		
HCM LOS	B			B			B			C		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left，\％	100%	0%	0%	10%	67%	0%	100%	0%	0%
Vol Thru，\％	0%	100%	0%	67%	33%	0%	0%	100%	0%
Vol Right，\％	0%	0%	100%	23%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	21	155	39	39	76	228	243	201	10
LT Vol	21	0	0	4	51	0	243	0	0
Through Vol	0	155	0	26	25	0	0	201	0
RT Vol	0	0	39	9	0	228	0	0	10
Lane Flow Rate	23	168	42	42	83	248	264	218	11
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.048	0.33	0.075	0.09	0.166	0.426	0.513	0.394	0.017
Departure Headway（Hd）	7.57	7.06	6.346	7.623	7.228	6.19	6.994	6.486	5.774
Convergence，Y／N	Yes								
Cap	470	505	560	473	493	577	512	551	615
Service Time	5.368	4.857	4.143	5.323	5.015	3.976	4.775	4.267	3.554
HCM Lane V／C Ratio	0.049	0.333	0.075	0.089	0.168	0.43	0.516	0.396	0.018
HCM Control Delay	10.8	13.3	9.7	11.1	11.5	13.6	17	13.5	8.7
HCM Lane LOS	B	B	A	B	B	B	C	B	A
HCM 95th－tile Q	0.2	1.4	0.2	0.3	0.6	2.1	2.9	1.9	0.1

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	-1622	-	-	-	-	-	-
HCM Lane V/C Ratio	-0.009	-	-	-	-	-	-
HCM Control Delay (s)	0	7.2	0	-	0	-	-
HCM Lane LOS	A	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	-	0	-	-	-	-	-

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-358	1135	-
HCM Lane V/C Ratio	-	-0.158	0.01	-
HCM Control Delay (s)	-	-	16.9	8.2

Intersection	
Intersection Delay，s／veh	14.5
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆			\uparrow	「	${ }^{*}$	个	「	＊	4	F
Traffic Vol，veh／h	4	26	9	51	25	237	21	164	39	252	210	10
Future Vol，veh／h	4	26	9	51	25	237	21	164	39	252	210	10
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	28	10	55	27	258	23	178	42	274	228	11
Number of Lanes	0	1	0	0	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.3			13.7			13			16.1		
HCM LOS	B			B			B			C		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left，\％	100%	0%	0%	10%	67%	0%	100%	0%	0%
Vol Thru，\％	0%	100%	0%	67%	33%	0%	0%	100%	0%
Vol Right，\％	0%	0%	100%	23%	0%	100%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	21	164	39	39	76	237	252	210	10
LT Vol	21	0	0	4	51	0	252	0	0
Through Vol	0	164	0	26	25	0	0	210	0
RT Vol	0	0	39	9	0	237	0	0	10
Lane Flow Rate	23	178	42	42	83	258	274	228	11
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.049	0.36	0.077	0.092	0.171	0.458	0.539	0.417	0.018
Departure Headway（Hd）	7.777	7.266	6.55	7.776	7.435	6.396	7.197	6.688	5.975
Convergence，Y／N	Yes								
Cap	462	497	548	462	486	567	504	541	603
Service Time	5.501	4.99	4.275	5.502	5.135	4.096	4.897	4.388	3.675
HCM Lane V／C Ratio	0.05	0.358	0.077	0.091	0.171	0.455	0.544	0.421	0.018
HCM Control Delay	10.9	14	9.8	11.3	11.7	14.4	18	14.1	8.8
HCM Lane LOS	B	B	A	B	B	B	C	B	A
HCM 95th－tile Q	0.2	1.6	0.2	0.3	0.6	2.4	3.2	2	0.1

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			¢			4	
Traffic Vol, veh/h	14	0	34	0	0	0	34	0	0	0	0	18
Future Vol, veh/h	14	0	34	0	0	0	34	0	0	0	0	18
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	15	0	37	0	0	0	37	0	0	0	0	20

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	913	1622	-	-	1574	-	-1084
HCM Lane V/C Ratio	0.04	0.009	-	-	-	-	-0.018
HCM Control Delay (s)	9.1	7.2	0	-	0	-	-
HCM Lane LOS	A	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.1	0	-	-	0	-	-

Mr. Evan Mattes
Associate Planner, El Dorado County
2850 Fairlane Court
Placerville, CA 95667

Subject: DR19-0006/Cool Dollar General, Oak Resources Technical Report

Dear Mr. Mattes:
This Oak Resources Technical Report (ORTP) summarizes Dudek's field evaluation of oak resources on the subject project site located on the south side of Northside Drive, east of State Route (SR) 49 in the community of Cool, El Dorado County, California. This report includes a discussion of site evaluation methods, a summary of findings, identification of anticipated impacts, and oak resource protection recommendations, consistent with the El Dorado County Oak Resources Conservation Ordinance (Ordinance No. 5061).

SITE AND PROJECT DESCRIPTION

The 1.69 -acre project site (APN 071-500-037) is located on the south side of Northside Drive, east of SR 49 in the community of Cool, El Dorado County, California (Figure 1). The site is undeveloped with gently sloping to flat terrain. Elevations on site range from approximately 1,525 to 1,555 feet above mean sea level (msl) and drainage generally flows to the southeast. The site bordered by commercial development to the north, SR 49 to the west, and vacant property to the south and east. A graded, gravel driveway and pad exist in the central portion of the property, accessed by Northside Drive. Vegetative cover on site is dominated by annual, nonnative grasses, with eleven (11) native oak and pine trees concentrated along the eastern boundary and the northwest corner. The site contains eight (8) Individual Native Oak Trees, one (1) of which is classified as a Heritage Tree. No Oak Woodlands were mapped on the project site.

The project proposes construction of a 9,100 square foot building for commercial/retail uses (Dollar General Store) and associated driveway, parking lot, utility, and landscaping improvements.

\qquad Feet

Subject: DR19-0006/Cool Dollar General, Oak Resources Technical Report

REGULATORY FRAMEWORK

The project site is located within unincorporated El Dorado County and is therefore subject to the County's oak resources reporting and impact mitigation requirements outlines in El Dorado County's Oak Resources Management Plan (ORMP) and codified in County Ordinance No. 5061. As defined in this ordinance, Oak Resources are defined as:
"Collectively, Oak Woodlands, Individual Native Oak Trees, and Heritage Trees."
Individual Native Oak Tree are defined as:
"Any live native oak tree of the genus Quercus (including blue oak (Quercus douglasii), valley oak (Quercus lobata), California black oak (Quercus kelloggii), interior live oak (Quercus wislizeni), canyon live oak (Quercus chrysolepis), Oregon oak (Quercus garryana), oracle oak (Quercus x morehus), or hybrids thereof) with a single main trunk measuring greater than 6 but less than 36 inches dbh, or with a multiple trunk with an aggregate trunk diameter measuring greater than 10 but less than 36 inches dbh."

Hertitage Trees are defined as:
"Any live native oak tree of the genus Quercus (including blue oak (Quercus douglasii), valley oak (Quercus lobata), California black oak (Quercus kelloggii), interior live oak (Quercus wislizeni), canyon live oak (Quercus chrysolepis), Oregon oak (Quercus garryana), oracle oak (Quercus x morehus), or hybrids thereof) with a single main trunk measuring 36 inches dbh or greater, or with a multiple trunk with an aggregate trunk diameter measuring 36 inches or greater."

The ordinance and ORMP also define oak resource impact reporting requirements and standards for impact mitigation. This Oak Resources Technical Report has been developed to address County requirements and includes mapped tree locations (Attachment A), tree size and attribute data and impact status (Attachment B), and recommendations for protection of trees to be retained on the project site (Attachment C).

METHODS

A Qualified Professional ${ }^{1}$ (Registered Professional Forester and International Society of Arboriculture (ISA) Certified Arborist) conducted a site evaluation on January 30, 2020 to document Oak Resources and collect necessary location and attribute information. Attribute information was collected for all trees on the project site with trunk Diameter at Breast Height

[^10](dbh) measurement equal to or exceeding 6 inches. Tree attribute data collected during the site evaluation included trunk diameter (dbh), tree height, canopy spread, general health condition, structural condition and presences of observable pests or other tree maladies. Trunk diameters were measured using a diameter tape which provides adjusted figures ${ }^{2}$ for diameter measurements when wrapping the tape around a tree's circumference. Diameter measurements were collected using standard protocol described by the Council of Tree and Landscape Appraisers in the "Guide for Plant Appraisal," published by the ISA. ${ }^{3}$

Trunk diameter measurements were taken at 4.5 feet above the ground along the trunk axis, with a few common exceptions. In cases where a tree's trunk split into multiple stems at approximately 4.5 feet above ground, the measurement was made at the location that best represented the trunk's diameter. Tree height measurements were estimated by the arborist and tree canopy diameter measurements were typically estimated by "pacing-off" the measurement based on the arborist's knowledge of his stride length or by visually estimating the canopy width. The tree crown measurements were made along an imaginary line intersecting the tree trunk that best represented the trees longest canopy diameter.

Pursuant to the Guide for Plant Appraisal, tree health and structure were evaluated with respect to five distinct tree components: roots, trunk, scaffold branches, small branches, and foliage. Each tree component was assessed with regard to health factors such as insect, fungal or pathogen damage, mechanical damage, presence of decay, presence of wilted or dead leaves, and wound closure. Components were graded as good, fair to good, fair, fair to poor, and poor, with 'good' representing no apparent problems, and 'poor' representing a tree with significant health or structural inferiorities.

The location of each individual tree was mapped using a Trimble Geo-7x global positioning systems (GPS) unit. Individual tree attribute data was collected concurrently with tree location mapping and entered into the GPS datalogger. Trees were tagged by the project biologist (Bole and Associates, February 2020) prior to Dudek's site evaluation. The unique tree identification numbers on each tag were recorded during our field assessment and are presented herein as the tree identification numbers (Tree ID) ${ }^{4}$. Following field evaluation efforts, tree location data was entered into a geographic information systems (GIS) format to facilitate mapping and tree impact determination.

[^11]
RESULTS

A total of eight (8) Individual Native Oak Trees meeting the size criteria identified in County Ordinance No. 5061 were mapped on the project site, including two species (blue oak (Quercus douglasii) and interior live oak (Quercus wislizeni)). One (1) tree met the criteria for classification as a Heritage Tree (36 -inch dbh or greater). No Oak Woodlands were mapped on the project site. Tree impacts were determined by evaluating mapped tree locations and the proposed project's grading plan. Seven (7) Individual Native Oak Trees would require removal to accommodate development of the proposed project, which includes the one (1) Heritage Tree located on site. The project's grading plan identifies that Tree \#1 will be retained; however, grading activity will disturb approximately 50% of this tree's root area. Post-construction survival of Tree \#1 with this level of root disturbance is unlikely, therefore, it has been identifies as an impact for the purposes of this report. A summary individual tree attributes and impact status is presented in Table 1. Attribute data for all trees mapped and assessed on the project site is presented in Attachment B. It is anticipated that the one (1) retained tree would require some level of canopy or root pruning or may be subject to construction-related dripline encroachment. Recommendations to minimize impacts to retained trees are provided in Attachment C.

Table 1
Individual Tree Data - DR19-0006/Cool Dollar General Project Site

Tree ID*	Botanical Name	Common Name	Total Trunk Diameter (in.)	Individual Native Oak Tree	Heritage Tree	Retain
1	Quercus douglasii	Blue oak	21	Yes	No	No
2	Quercus douglasii	Blue oak	19	Yes	No	Yes
3	Quercus wislizeni	Interior live oak	40	Yes	Yes	No
4	Pinus sabiniana	Gray pine	17	No	No	No
5	Quercus douglasii	Blue oak	15	Yes	No	No
6	Quercus douglasii	Blue oak	21	Yes	No	No
7	Quercus wislizeni	Interior live oak	27	Yes	No	No
8	Pinus sabiniana	Gray pine	16	No	No	No
11	Quercus douglasii	Blue oak	20	Yes	No	No
12	Pinus sabiniana	Gray pine	7	No	No	No
13	Quercus wislizeni	Interior live oak	24	Yes	No	No

*As noted, Trees \#9 and 10 included in the project's Revised Biological Assessment are located off-site and are not included in this report.

MITIGATION

As presented in Table 1, a total of seven (7) Individual Native Oak Trees will require removal, which includes one (1) Heritage Tree (Tree \#3). The project is not exempt from mitigation
requirements and does not qualify for mitigation reductions, as outlined in County Ordinance 5061, Section 130.39.050. Mitigation for Individual Native Oak Tree and Heritage Tree impacts is therefore required, as outlined in County Ordinance 5061, Section 130.39.070(C)(2). As outlined, mitigation shall be reached according to the following options:

- In-lieu fee payment of $\$ 37,944$. This is calculated based on an in-lieu fee of $\$ 153 /$ diameter inch for removed Individual Native Oak Trees (128 total inches) plus \$459/diameter inch for removed Heritage Trees (40 total inches).
- Off-site replacement planting consistent with Section 2 of the County's ORMP within an area subject to a Conservation Easement or acquisition in fee title by a land conservation organization. Replacement sizes and quantities shall be consistent with Table 4 in the ORMP. Based on a review of the project site and proposed development plan, the site is not large enough to accommodate on-site replacement trees. A Replacement Planting Plan shall be prepared, consistent with Section 2.4 of the ORMP, if this mitigation option is selected.

In addition to the mitigation requirements listed above, it is recommended that the tree protection recommendations outlined in Attachment C be implemented to minimize construction-related impacts to retained Tree \#2.

ARBORIST'S DISCLOSURE

This report provides conclusions and recommendations based only on a visual examination of the trees and surrounding site by an ISA Certified Arborist and reasonable reliance upon the completeness and accuracy of the information provided to the arborist. The examination did not include subterranean or internal examination of the trees.

Arborists are tree specialists who use their education, knowledge, training and experience to examine trees, recommend measures to enhance the beauty and health of trees, and attempt to reduce the risk of living near them. Although trees provide many benefits to those who live near them, they also include inherent risks from breakage or failure that can be minimized, but not eliminated.

Arborists cannot detect every condition that could possibly lead to the failure of a tree. Trees are living organisms subject to attack by disease, insects, fungi, weather, and other forces of nature, and conditions that lead to failure are often hidden within trees and below ground. There are some inherent risks with trees that cannot be predicted with any degree of certainty, even by a skilled and experienced arborist.

Arborists cannot predict acts of nature including, without limitation, storms of sufficient strength, which can cause even an apparently healthy tree to fail. Additionally, arborists cannot guarantee that a tree will be healthy or safe under all circumstances, or for any specific period of time. A tree's condition could change over a short or long period of time due to climatic, cultural or environmental conditions. Further, there is no guaranty or certainty that recommendations or efforts to correct unsafe conditions will prevent future breakage or failure of a tree.

To live or work near trees is to accept some degree of risk. Neither the author of this report nor Dudek have assumed any responsibility for, nor will either of them be liable for, any claims, losses or damages for damage to any tree, death or injury to any person, or any loss of or damage to any personal or real property.

Sincerely,

Scott Eckardt

Registered Professional Forester \#2835
ISA Certified Arborist \#WE-5914A
Cc: Brian Grattidge, Dudek
Att: Attachment A-Tree Location Exhibit
Attachment B - Tree Information Matrix
Attachment C - Tree Protection Measures

ATTACHMENT A
 Tree Location Exhibit

\qquad ${ }_{3}^{60}$ Feet

ATTACHMENT B Tree Information Matrix

Tree ID (tag)	Botanical Name	Common Name	Trunk Diameter (dbh) (in.)			Aggregate dbh (in.)	Height (ft.)	Canopy Radius (ft.)	Health	Structure	On-Site	Heritage Tree	Retain	Notes
			Trunk 1	Trunk 2	Trunk 3									
1	Quercus douglasii	Blue oak	21			21	25	15	Good-Fair	Good-Fair	Yes	No	No	nails, horseshoes on trunk
2	Quercus douglasii	Blue oak	19			19	25	13	Good-Fair	Good-Fair	Yes	No	Yes	
3	Quercus wislizeni	Interior live oak	40			40	30	20	Good-Fair	Fair	Yes	Yes	No	basal cavities, decay
4	Pinus sabiniana	Gray pine	17			17	45	11	Good-Fair	Good-Fair	Yes	No	No	
5	Quercus douglasii	Blue oak	15			15	30	11	Good-Fair	Good-Fair	Yes	No	No	
6	Quercus douglasii	Blue oak	21			21	35	13	Fair	Good-Fair	Yes	No	No	mistletoe
7	Quercus wislizeni	Interior live oak	20	7		27	30	16	Fair	Fair	Yes	No	No	basal cavities, canopy dieback
8	Pinus sabiniana	Gray pine	16			16	20	10	Fair-Poor	Poor	Yes	No	No	topped
11	Quercus douglasii	Blue oak	6	7	7	20	12	8	Fair	Fair-Poor	Yes	No	No	suppressed, basal cavities, lean
12	Pinus sabiniana	Gray pine	7			7	25	6	Fair	Fair-Poor	Yes	No	No	codominant leaders, included bark
13	Quercus wislizeni	Interior live oak	11	7	6	24	12	10	Fair	Poor	Yes	No	No	growing along ground

ATTACHMENT C
 Tree Protection Recommendations

Attachment C
 Tree Protection Recommendations

Tree Protection Measures Prior to Construction

Prior to any grading activity, retained trees with canopies that fall within 30 feet of construction activity shall be protected by fencing and signage. All contractors shall be made aware of the tree protection measures. A project arborist shall be assigned to monitor tree health and construction activity near retained trees on site. The project arborist shall be an International Society of Arboriculture (ISA) Certified Arborist or Registered Consulting Arborist.

Inspection: Any large tree proposed for preservation on site should be thoroughly inspected for internal or subterranean decay by an ISA Certified Arborist or Registered Consulting Arborist prior to construction activity to determine if retention/protection on site is a viable management option. A Level 2 Risk Assessment is recommended for all large retained trees on site.

Site Preparation: Tree removal, pruning, and inspection should be conducted during site preparation activities. Where permitted by the City, tree removal and pruning activity should be conducted according to industry standards (ANSI A300).

Fencing and Signage: A 4-foot high, orange web fence with tree protection signs shall be erected around all trees (or tree groups) to be retained. The protective fence shall be installed around the tree's dripline. This will delineate the tree protection zone and prevent unwanted activity in and around the trees in order to reduce soil compaction in the root zones of the trees and other damage from heavy equipment. Fences are to be mounted on stakes at no more than 10 -foot spacing. In areas where fencing is located on paving or concrete that will not be demolished, then the stakes may be supported by an appropriate grade level concrete base. Tree protection signs should be attached to every fourth post. The contractor shall maintain the fence to keep it upright, taut, and aligned at all times. Fencing shall be removed only after all construction activities are complete.

Pre-Construction Meeting: A pre-construction meeting shall be held between all contractors (including grading, tree removal/pruning, builders, etc.) and the project arborist. The project arborist will instruct the contractors on tree protection practices and answer any questions. All equipment operators and spotters, assistants, or those directing operators from the ground, shall provide written acknowledgement of their receiving tree protection training. This training shall include information on the location and marking of retained trees, the necessity of preventing damage, and the discussion of work practices that will accomplish such.

Protection and Maintenance during Construction

Once construction activities have begun the following measures shall be adhered to:
Avoidance: Signs, ropes, cables, or any other items shall not be attached to any retained tree.
Equipment Operation and Storage: Operating heavy machinery around the root zones of trees will increase soil compaction, which decreases soil aeration and subsequently reduces water penetration in the soil. All heavy equipment and vehicles shall stay out of the fenced tree protection zone, unless where specifically approved in writing by the project arborist.

Storage and Disposal: Do not store or discard any supply or material, including paint, lumber, concrete overflow, etc. within the fenced tree protection zone or within 10 feet of any tree. Remove all foreign debris within the fenced tree protection zone; it is important to leave the duff, mulch,

Attachment C Tree Protection Recommendations

chips, and leaves around the retained trees for water retention and nutrients. Avoid draining or leakage of equipment fluids near retained trees. Fluids such as: gasoline, diesel, oils, hydraulics, brake and transmission fluids, paint, paint thinners, and glycol (anti-freeze) should be disposed of properly. Keep equipment parked outside of the fenced tree protection zone of retained trees to avoid the possibility of leakage of equipment fluids into the soil. The effect of toxic equipment fluids on the retained trees could lead to decline and death.

Grade Changes: Grade changes are not recommended within the dripline of retained trees. No grade changes (cut, fill, compact) shall occur within 4 feet (measured horizontally) of the base of any retained tree. Lowering the grade within a tree's dripline will necessitate cutting main support and feeder roots, jeopardizing the health and structural integrity of the tree(s). Adding soil, even temporarily, on top of the existing grade will compact the soil further, and decrease both water and air availability to the trees' roots. A drainage outlet shall be provided, if necessary, to allow for appropriate surface drainage within the tree's dripline.

Moving Construction Materials: Care shall be taken when moving equipment or supplies near the trees, especially overhead. Avoid damaging the tree(s) when transporting or moving construction materials and working around retained trees (even outside of the fenced tree protection zone). Above ground tree parts that could be damaged (e.g., low limbs, trunks) should be flagged with red flagging. If contact with the tree crown is unavoidable, prune the conflicting branch(es) using ISA or ANSI A300 standards.

Trenching: All trenching shall be outside of the fenced tree protection zone. Roots primarily extend in a horizontal direction forming a support base to the tree similar to the base of a wineglass. Where trenching is necessary in areas that contain tree roots, prune the roots using a root pruner. All cuts should be clean and sharp, to minimize ripping, tearing, and fracturing of the root system. The trench should be made no deeper than necessary.

Irrigation: Trees that have been substantially root pruned (30% or more of their root zone) will require irrigation for the first twelve months. The first irrigation should be within 48 hours of root pruning. They should be deep watered every two to four weeks during the summer and once a month during the winter (adjust accordingly with rainfall). One irrigation cycle should thoroughly soak the root zones of the trees to a depth of 3 feet. The soil should dry out between watering; avoid keeping a consistently wet soil. Designate one person to be responsible for irrigating (deep watering) the trees. Check soil moisture with a soil probe before irrigating. Irrigation is best accomplished by installing a temporary above ground micro-spray system that will distribute water slowly (to avoid runoff) and evenly throughout the fenced tree protection zone but never soaking the area located within 6-feet of the tree trunk, especially during warmer months. For trees not subject to root pruning activity, the amount of irrigation provided shall not be changed from that which was provided prior to the commencement of construction activity.

Canopy Pruning: All pruning shall be completed under the direction of an ISA Certified Arborist and following ISA or ANSI A300 standards. Only conflicting limbs, broken limbs and dead wood shall be removed from tree canopies.

Washing: Periodic washing of the foliage is recommended during construction but no more than once every two weeks. Washing should include the upper and lower leaf surfaces and the tree bark. This should continue beyond the construction period at a less frequent rate with a high-powered hose only

Attachment C Tree Protection Recommendations

in the early morning hours. Washing will help control dirt/dust buildup that can lead to mite and insect infestations.

Maintenance after Construction

Once construction is complete the tree protection fencing may be removed and the following measures performed to sustain and enhance the vigor of the retained trees.

Mulch: Provide a 4-inch mulch layer under the canopy of trees. Mulch should include clean, organic mulch that will provide long-term soil conditioning, soil moisture retention, and soil temperature control.

Pruning: Pruning should only be done to maintain clearance and remove broken, dead or diseased branches. Pruning shall only take place following a recommendation by an ISA Certified Arborist and performed under the supervision of an ISA Certified Arborist. No more than 15% of the canopy shall be removed at any one time. All pruning shall conform to ISA or ANSI A300 standards.

Watering: Retained trees on site shall be watered as they were prior to the commencement of construction activity. Supplemental irrigation may be necessary for twelve months following substantial root pruning.

Watering Adjacent Plant Material: All plants near the trees shall be compatible with water requirements of said trees. Watering regime included in the site's landscape plan shall be developed with consideration for the water needs of retained trees.

Spraying: If the trees are maintained in a healthy state, regular spraying for insect or disease control should not be necessary. If a problem does develop, an ISA Certified Arborist should be consulted; the trees may require application of insecticides to prevent the intrusion of bark-boring beetles and other invading pests. All chemical spraying should be performed by a licensed applicator under the direction of a licensed pest control advisor.

COOL PILOT HILL ADVISORY COMMITTEE
 \% Aloha Adams, Chair
 P. O. Box 365, Cool, CA 95614
 530-320-0887

March 16, 2020
Evan.mattes@edcgov.us
Mr. Evan Mattes, Planner
El Dorado County Planning Department
2850 Fairlane Court
Placerville, CA 95667

RE: DR19-0006 Dollar General/Cool General Retail

Dear Mr. Mattes:

On behalf of the COOL PILOT HILL ADVISORY COMMITTEE, I, as Chair, have been charged to write you with our concerns regarding the above proposed Dollar General project on Northside Drive in Cool.

In the case of the project on Parcel 071-500-037-000, Cool General Retail, there are multiple and significant aspects that result in the need for mitigation measures before determining that the project is applicable for this location, including the following.

CEQA, or the California Environmental Quality Act, is a statute that requires state and local agencies to identify the significant environmental impacts of their actions and to avoid or mitigate those impacts, Significance is determined not by a county wide determination but a project based at minimum on location and negative effects it has to the community.

Aspects of CEQA which are significant to this project:

Traffic: Traffic congestion is currently a problem with the local businesses and during this non-tourist season at the intersection of SR 49 and SR 193 just south of this proposed building. Traffic currently backs up during mornings and especially late afternoon causing drivers to incur long delays to get thru the intersection. This does not include traffic during any holiday or tourist season. Additional traffic from Northside Drive would add to the congestion. Also, having additional large delivery trucks coming into the area will significantly add to the congestion. This doesn't even take into consideration the significant congestion that is caused by emergencies such as the recent Country Fire. Additionally, the traffic from local businesses, such as the Cool Boardwalk and the gas station also contribute to the congestion and must be taken into consideration..

Page four of the Traffic Impact Analysis (TIA) states that Northside Drive is a two-lane street, which is certainly a stretch as it does not have a center line and two vehicles travelling in opposite direction must stop and move slowly.

Exhibit N

Further on page four, "intersection has been identified for evaluation: SR 49 and/Florian Court and SR 49/Northside Drive. Both can be challenging to access any time of day; the same for the commercial driveway as well as SR 193.

Page six notes LOS as D, which can cause long delays and unstable flow. It is unconscionable that Cal Trans would identify the long range plan for SR 49 as LOS D. The residents of the area deserve better than that, which only increases in the event of an emergency.

Geotechnical Strata: There appears to be significant earthwork leading to concern regarding the amount of dust, fill, rock disposal, slope stability and cut areas. Measures must be taken to ensure that the builder adheres to requirements for development and removal. The construction manager or representative should be present at all times to observe all grading operations.

Environmental Justice: The Project must consider the impacts to the general area financially as well as environmentally. This type of project does not provide any enhancement to this Gold Rush area. Instead it degrades the quality by providing "low-end" services. It also will create a negative impact on surrounding businesses which are struggling in the current economic environment. Keep in mind that a small sporting goods shop recently closed because it could not survive. Unfortunately the most recent impact of the Coronavirus causing many local small businesses to close and many may never reopen, which will impact our communities significantly. Based on these facts only, this project should be rejected.

Stormwater: The area surrounding the project has no measures to control stormwater runoff from the project area. Currently the bare land provides for minimal absorption of rainfall, which could cause unabated run-off. Multiple times during the year ponding of water in the intersection occurs causing dangerous traffic hazards for people driving, as well as the people walking thru that area. There needs to be mitigation for a walkway from Northside Drive to the intersection of SR 193.

Percolation: There are no current wastewater systems in the area. To get a health dept approved system there would have to be a significant system approved and installed to pump and treat their wastewater before it enters the environment if it can even be absorbed into the ground. Long-term plans must be in place to monitor wastewater systems.

Cultural/Historic: This is a Gold Rush area and the historic, cultural and archeological regulations of CEQA need to be considered and mitigated before this project goes forward.

It is extremely important to the community of Cool and the surrounding areas, that El Dorado County not minimize the concerns and issues of this type of project or look at it for the minimal income potential.

Based on the above areas of concern and needs for extensive mitigations, it is the opinion of the members of COOL PILOT HILL ADVISORY COMMITTEE this project should be rejected.

Respectfully submitted,
/s/Aloha Adams, Chair

EL DORADO COUNTY PLANNING SERVICES

Pre-application Worksheet PA 19-0006 Cool Dollar General Pre-Application Assessor's Parcel Numbers (APN): 071-500-037

1. Pre-Application Request: Request for 9,100 square foot retail store including landscaping, a 31 space parking lot and an encroachment onto State Highway 49.
2. Location:

The project is located on the east side of State Highway 49 south of the intersection with Northside Drive in the Cool area, consisting of a 1.69 acre parcel.
3. General Plan Land Use Designation Consistency:

The project parcels have a General Plan Land Use designation of Commercial (C).

4. Zoning Consistency:

The project site has a zoning designation General Commercial (CG) with a Design Control (DC) zoning overlay. Retail sales and service is a use allowed by right within the CG zoning designation. The DC overlay requires that the project obtain a Design Review permit, which is to ensure project compatibility with historical, scenic, or community design criteria

5. Advice and Recommendation

Formal application processing will include project review for Completeness, formal agency review and conditioning, and environmental analysis (ie. California Environmental Quality Act). The applications shall be required to submit applicable project materials (project plans, technical studies and reports) in order to adequately review and analyze the project. The project will be reviewed for consistency with the applicable policies of the General Plan including land use compatibility with surrounding uses, aesthetics, noise, air quality, and traffic, and for adherence with applicable development standards in the Zoning Ordinance including setbacks, building heights, site lighting and landscaping, signs, and parking.

The General Plan and Zoning Ordinance can be accessed by clicking on the following links:
https://www.edcgov.us/Government/Planning/pages/Adopted_General_Plan.aspx
https://www.edcgov.us/Government/planning/Pages/zoning_ordinance.aspx
Typically for Design Review Permits located outside of the Scenic Corridor the Planning Director will be the approving authority. The Director may defer action and refer any permit or authorization application to the Planning Commission for determination. The Planning Director has determined that this is a project that will be deferred to the Planning Commission
for determination. Through this Pre-App submittal staff has determined that this DR would have an applicable fee of $\$ 10,484$. Of this total amount $\$ 7,156$ is a Planning fee, $\$ 328$ is an Environmental Management fee, and $\$ 3,000$ is a Transportation Department time and materials deposit.

Planning Commissioner James Williams identified that he would like for the applicant to conduct public outreach meetings for the project as well as incorporating elements of DR140005 Dollar General Georgetown (Attachment G).

6. Other Affected Agencies

Submittal of a formal project application would be routed to the following agencies for input and comment:

- Resource Conservation District: Review of grading impacts and soil types
- Environmental Management: Hazardous Materials, Septic
- Air Quality Management District: Review of short and long term air quality impacts and Green House Gas
- Utility Companies: AT\&T, PG\&E, Comcast, etc. to review impacts to utilities in area.
- Building Department: Review of building permit plans for streamlined permitting process upon approval
- Department of Transportation: Traffic and Circulation; Review of Preliminary Grading Plan and Drainage;
- Surveyor: Property surveys/Addressing
- Fish and Game: Review of potential existence and effects to natural and sensitive habitats and species; water quality
- El Dorado County Fire Protection District
- Georgetown Public Utility District (GPUD)
- CALTRANS District 3
- El Dorado County Sheriff

8. Attachments:

Attachment A: Comments Received on Pre-Application PA19-0002
Attachment B: Design Review Application
Attachment C: Zoning Designation Map
Attachment D: General Plan Land Use Designation Map
Attachment E: Aerial Map
Attachment F: Fee Schedule
Attachment G: DR14-0005 Dollar General Georgetown Plan Set
Disclaimer: The preliminary analysis by Planning Services is based upon the documentation provided at the Pre-Application Meeting. While Planning Services makes every attempt to provide a comprehensive review for future formal applications, often the information submitted by the applicant's changes over time. Additional information and studies may be required by the application at the time of submittal. Any re-design of the project or potential impacts not known at the time of Pre-Application may require additional information in order to process formal applications.

PA19-0002/Better Placer Forest
June 14, 2019
Page 3

Community Design Guide

El Dorado County Planning Department Prepared: November 1981

Reformatted: May $2017^{1,2}$
Adopted by the Board of Supervisors April 24, 2018 by Resolution 071-2018

Reformatting Notes:
${ }^{1}$ Original document produced in 1981 not in electronic format. Due to poor print quality, the original photographs could not be reproduced in reformatting this document. For purposes of consistency, photographs of similar buildings, features or architectural theme(s) were used whenever possible.
${ }^{2}$ For purposes of readability, minor layout/typeface changes have been made to various section(s) of this document. However, no changes were made to the text.

TABLE OF CONTENTS

The photographs in this guide illustrate good design in buildings, sties, and landscaping of existing projects in this County. This guide is not intended to exemplify a particular style of architecture to which developments must conform.
Design Review Page 3
General Guidelines 4-5
Specific Criteria:
Site Planning 6
Building Design 7
Landscaping 8
Buffering 9
Signs. 10
Parking 11
Review Procedure. 12
Project Types:
Industrial 14
Commercial 15
Professional. 16
Multi-Family 17
Service Stations 18
Restaurants 19
Motels 20
Shopping Centers 21
Prepared: November 1981, by the El Dorado County Planning Department, John Branch, Project Leader

FOREWORD

Good architecture is always desirable both for aesthetic and economic reasons.

Well-designed buildings and landscaping enhance the visual character of an area, reflect the values of a community and increase business and property values.

The very quality of life is affected by building design and the blending of structures to the building site.

Resident and tourist alike can take pleasure in an interesting roof line, contrasting textures of wood and stone, or landscaping of green lawn and flowering shrubs.

DESIGN REVIEW

To promote good architecture, the El Dorado County Board of Supervisors has adopted a design review ordinance that regulates design within designated districts judged to be of special natural beauty or contributing to the County's character and tourist economy.

The same ordinance provides design review for sites and structures of special historical interest and for development in the visually sensitive mountain areas of El Dorado County. This ordinance is also intended to help in situations where there are buffer zones between residential and commercial development or special uses which may be desirable, but are attended by problems like noise and traffic congestion.

Within design review districts, as designated on maps, the County has the ability to review and control the design of commercial, industrial and multi-family residential development.

Design review is just one of several procedures the County can use to guide development in the interest of the public's health, safety and general welfare. It is separate from, and in addition to, other procedures that might be necessary, such as a use permit, rezoning, variance or building permit.

The process looks at more than the proposed building. It also examines the project's layout, landscaping, parking, signs, and other features. It covers all the factors in the project's appearance, plus how well it fits its surroundings. This does not mean the County is dictating a particular style of architecture for design review districts. Variety is preferred, not uniformity. But it does mean the County is seeking higher standards of architecture.

GENERAL

In reviewing plans, County authorities will evaluate a project on its contribution to the County's character and on its suitability for its location. Stock building plans might not be acceptable. Some basic questions by which projects will be evaluated are:

Will the project be a good neighbor?
It should not impair the use, value or good development of neighboring property. Its design should minimize interference with the privacy, quiet and views of its neighbors and avoid traffic problems and damage to the natural environment.

Does the project follow the basic principles of good design?
Harmony, continuity, variety, proportion, simplicity and balance should prevail in all aspects of the project, whether it's a multi-unit complex or a single sign. The project should be designed as a whole, fit into its surroundings and avoid monotony in form, detail and siting.

Does the project give people some variety and something interesting to look at?
Aesthetics are important. Landscaped areas, benches and fountains are much more appealing to the eye than blank walls and uninterrupted rows of parking.

GUIDELINES

Does the project suit its purpose? Do the various components of the project work well together?
An apartment building, for example, should look residential and be livable.

Does the project make good use of the site?
The interior spaces should be oriented to take advantage of outward views. Natural topography and trees should be retained where possible.

Do different elements fit together logically?
Parking ought to be located so a person can easily get from car to building entrance.

Are materials, forms and other elements of a project suitable for its uses?
Exterior finishes should aid maintenance and be harmonious with surroundings.

SPECIFIC CRITERIA

SITE PLANNING

During review of development projects, specific criteria relating to the site, the building, landscaping, signs, parking and other features will be considered.

Suiting the Site - A designer should try to fit a project to the existing site, rather than alter the site to accommodate a stock plan. Preserve topography, the natural grade and vegetation. Avoid excessive cuts and fills.

Open Space - Natural features and views should be maintained and protected through use of adequate open space.

Parking Areas - Screen parking areas from public ways and divide them up with landscaping, walls, fences, berms and other means.

Lighting - Exterior lighting should be subdued and avoid creating a glare for occupants or neighboring properties. Lighting should enhance the building design and landscaping as well as providing for safety and security.

Trash and other Service Areas - Locate trash containers and loading docks away from public streets and store entrances and screen them. Screening should be durable and an integral part of the overall structural design.

BUILDING DESIGN

The building design should consider many points:
Harmony - Different structures and parts of structures should harmonize with each other and the neighborhood. New construction should go well with the old, or the old may be remodeled to go with the new.

Materials - Use materials honestly. Simulated wood or masonry, for example, generally is not acceptable.

Finishes, Textures, Colors - Exterior treatment should be subdued and restrained. Treatment should aim at durability and ease of maintenance as well as initial beauty. The different building materials of stone, wood and timber need to be skillfully blended. Large building masses should be broken with architectural detail, roof lines developed with interest and variety, and windows enlivened with detail.

Mechanical Equipment and Utilities - Design service equipment, including meter boxes, as part of the structure and provide screening for them.

Energy Conservation - Design should minimize the need for mechanical heating and cooling. Wherever possible, use sunlight for heating and illumination, and natural ventilation and shading for coolness.

LANDSCAPING

Landscaping improves the appearance of sites and buildings, helps erosion control and provides screening and shade. Landscaping, including trees, shrubs and ground cover, should be included in all development projects.

The good designer will incorporate existing vegetation and natural rock formations where possible. The plant materials used should be appropriate for the sun, wind, soil compaction and water conditions of the project.

Maintenance - Choose landscape materials and arrangements to minimize maintenance. A permanent irrigation system should be provided. Automatic watering systems, set to water at night or early morning, are encouraged.

Parking Lots - Landscaping ought to include planters at suitable intervals throughout the lot and at the ends of parking rows. It should include trees that will provide adequate visual relief and shading when they mature. Landscaping must not block a driver's view.

Trees - Trees have many uses. They can provide summer shade for parked cars and pedestrian walkways; provide visual screening; provide accent points that help reduce the formless expanse of a parking lot; filter the glare of reflective pavement, muffle noise and trap dust and airborne particles.

BUFFERING

Adequate buffering and screening may be required in areas where different land uses are adjacent to each other.

The purpose of screening and buffering is to reduce or eliminate the conflicts and nuisances that some land uses cause to others.

Industrial and commercial land uses should be screened from adjacent residential areas by use of dense landscaping, earth berms and fences so that noise, light glare, and other visual disturbances are minimized.

Where some types of land uses front on and can be viewed from a public road, the use of buffers and other screening techniques may be required to shield areas where there is outside storage of materials and equipment.

When new developments are proposed to be located in existing neighborhoods, the project should not be sited to overlook adjacent homes. The new structures should also be located so that the buildings do not block the sun's light to the adjacent parcels.

Changes of grade, fences, walls, earth berms and dense plantings of shrubs and trees can provide permanent buffering and screening to reduce or minimize the conflicts that one type of land use may cause to another.

SIGNS

Signs are a necessary aid to commercial enterprise but need as careful handling as the building and site.

Design Compatibility - Signs, their materials, size, color, lettering, location and arrangement, should be an integral part of the site and building design and compatible with the surroundings.

Consistency - Keep signing consistent in location and design throughout a development. This includes shopping centers.

Restraint - Signing should be simple, restrained and subordinate to the overall project design. A sign ought to attract and identify, but not dominate the site.

Types - Wall signs, graphic symbol signs and low profile free-standing signs are encouraged. Flashing, moving and rotating signs are prohibited by County ordinance.

Simplicity - Signs should use minimum copy and suitable lettering and avoid garish materials and shapes.

Lighting - Subtle lighting and landscaping can enhance a sign's setting and draw attention to it. The light source should be screened.

An excess of signs or wrong placing confuses a potential customer and destroys the sign's purpose.
-10-

PARKING

Designers should give careful thought to parking areas. Well designed buildings on choice sites lose their visual impact if all that is seen on approach is barren blacktop and monotonous rows of cars.

Parking lots also contribute to the deterioration of the environment by reducing ground water and increasing surface runoff and erosion.

Second, there must be a practical and economic use of land in layout of parking spaces, landscape areas and vehicle and pedestrian access.

Third, landscape plants, along with earth berms and walls, must be designed to screen, shade and soften the impact of parking areas.

A good designer should consider locating the parking to the rear or side of a building rather than in front. For a large development, a parking area's apparent size can be reduced by dividing it into several smaller lots or placing it on more than one level.

REVIEW PROCEDURE

A developer planning to build in a design review district is encouraged to hold early, informal talks with county officials on what information will be required and in how much detail.

Then the developer should submit detailed plans covering the site, drainage, landscaping and sometimes grading, along with elevations of the proposed buildings and information on such features as signs. These papers first go to the County's Building Department which will pass them on to the Planning Department for review.

The County Planning Director, sometimes with the help of an advisory Design Review Committee, will be responsible for reviewing and approving or denying an application.

Any appeal will go to a public hearing before, the County's Planning Commission and its decision is final.

The Planning Director will have 15-20 days from the filing of the completed application for design review to give a written decision on whether the application meets the ordinance and a building permit should be issued.

PROJECT
 TYPES
 INDUSTRIAL

This section shows different types of projects and lists design considerations which particularly apply to that kind of building.

Select a site large enough to accommodate future expansion as well as provide a buffer to adjacent development.

Present your "best face" to public view.

Screen outdoor storage and loading operations with fencing and planting and separate them from car parking areas.

Install underground utilities where possible.

Provide ample parking for employees and separate from visitor parking.

Use landscaping to break up large areas of asphalt and soften the lines of building and site.

COMMERCIAL

Employ variations from conventional building design and materials.

Provide ample landscaping with large plant materials for quick effect.

Use a minimum of site grading and replant cuts and fills.

Integrate signing with the total architectural design.
Provide screening and light shielding from adjacent residential properties.

Separate pedestrian and car traffic.

Keep the public entrance free of parking.

Provide screening for utilities, trash disposal, vent stacks, etc.

Consider bicycle parking facilities.

PROFESSIONAL

Use landscaping plants suited to the general climate.
Take advantage of special environmental features at and around the site.

Provide sheltered outdoor spaces for informal conversation.
Install underground utilities where possible.

Architectural treatment is important and should integrate the building with the site and surrounding community.

Use construction materials suited to the building type and style and avoid garish colors and contrasts.

Minimize excessive site preparation and grading.

MULTIFAMILY

Take advantage of changes in grade but utilizing site terracing and avoid mass grading.

Leave open space areas within the project for landscaping and group use.

Provide private areas such as patios.

On steep sites, consider locating parking under buildings.
Screen the parking areas from public view.
Maintain driveways and parking areas at a minimum grade.
Avoid monotonous building design.

Provide for children's play areas.
-17-

SERVICE STATION

Provide ample landscaping to relieve large, paved areas.

Reduce outdoor display and storage to a minimum.

Screen outdoor storage with fencing and planting.
Reduce signing to that which is necessary for identification.

Separate pedestrian from vehicular circulation.

Refrain from using banners, pennants and wind powered devices.

RESTAURANTS

Choose an architectural treatment that fits into the natural environment.

Provide facilities for outdoor waiting areas.

Provide open areas for visual relief.

Use natural slopes to enhance the design

Use appropriately placed landscaping to direct pedestrian and vehicular traffic.

Use a well-designed, carefully placed sign for identification.

MOTELS

Select your site to take advantage of special views.

Let the site design, architecture and landscaping works as a unit.

Design your sign to reflect your reputation of service.

Design the facilities to take advantage of the local climate.
Install underground utilities where possible.

Retain native tree cover and replant cuts and fills.

Screen outdoor storage with fencing and planting.

SHOPPING CENTERS

Design the complex to be attractive from ALL directions.
Select a site large enough to provide ample parking.
Enhance the parking area with landscaping.
Retain architectural unity throughout the center.

If outdoor display is necessary, provide a specially designed area for that purpose.

Provide screening and light shielding from adjacent residential properties

Use planting and fencing to screen loading and outdoor storage or sales areas.

$21-0733$ E 177 of 180

${ }^{21-0733 \mathrm{E}} 178$ of 180

[^0]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^1]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^2]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^3]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^4]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^5]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^6]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^7]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^8]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^9]: Traffic Impact Analysis for
 Cool Dollar General Store, El Dorado County, CA

[^10]: ${ }^{1}$ El Dorado County Ordinance No. 5061, Section 130.39.030

[^11]: ${ }^{2}$ Circumference measurement (inches) divided by $3.14(\pi)$ provides diameter measurement in inches
 ${ }^{3}$ International Society of Arboriculture (ISA). 2000. Guide for Plant Appraisal (9th Edition)
 ${ }^{4}$ Trees \#9 and 10 included in the project's Revised Biological Assessment (Bole and Associates, February 18, 2020) are located off-site and are therefore not included in this report.

