## PROPOSED

# PM<sub>2.5</sub> IMPLEMENTATION/MAINTENANCE PLAN AND REDESIGNATION REQUEST FOR SACRAMENTO PM<sub>2.5</sub> NONATTAINMENT AREA APPENDICES

### For 8 YWYa VYf", 2013 Board Hearing

El Dorado County Air Quality Management District Dave Johnston, Air Pollution Control Officer 330 Fair Lane Placerville, CA 95667 (530) 621-7501 http://www.edcgov.us/AirQualityManagement/

Placer County Air Pollution Control District Tom Christofk, Air Pollution Control Officer 110 Maple Street Auburn, CA 95603 (530) 745-2330 http://www.placer.ca.gov/Departments/Air.aspx

Sacramento Metropolitan Air Quality Management District Larry Greene, Air Pollution Control Officer 777 12th Street, Third Floor Sacramento, CA 95814-1908 (916) 874-4800 http://www.airquality.org

> Yolo-Solano Air Quality Management District Mat Ehrhardt, Air Pollution Control Officer 1947 Galileo Court, Suite 103 Davis, CA 95618 (530) 757-3650 http://www.ysaqmd.org

### ACKNOWLEDGEMENTS

This report was prepared by the Sacramento Metropolitan Air Quality Management District staff as a joint project with the El Dorado County Air Quality Management District, the Placer County Air Pollution Control District, and the Yolo-Solano Air Quality Management District.

Project Oversight

Brigette Tollstrup, Charles Anderson

Lead Authors

Steven Lau, Hao Quinn, Greg Tholen

**Contributors** 

Sacramento Metropolitan AQMD: Aleta Kennard, Janice Lam

El Dorado County AQMD: Adam Baughman

Placer County APCD: Yu-Shuo Chang

Yolo-Solano AQMD: Matt Jones

We would like to thank staff from the California Air Resources Board for their major contributions in the development of the updated motor vehicle emissions budgets, vehicle miles travelled offsets, and meteorological analysis. In addition, we also thank staff from Sonoma Technology, Inc. for developing the Chemical Mass Balance analysis and Maintenance Demonstration, and providing technical reviews and supports.

> Acknowledgments Page iii

13-1304 E 3 of 60

Page iv

### TABLE OF CONTENTS

| Appendix A | Air Quality Data                                                                       | A-1                |
|------------|----------------------------------------------------------------------------------------|--------------------|
| Appendix B | Emissions Inventory                                                                    | B-1                |
| Appendix C | Chemical Mass Balance (CMB): Modeling<br>Performance Metrics, and Sensitivity Analyses | Parameters,<br>C-1 |
| Appendix D | Motor Vehicle Emission Budgets                                                         | D-1                |
| Appendix E | Meteorological Analysis                                                                | E-1                |

13-1304 E 5 of 60

### Appendix A: Air Quality Data

Electronic appendix is available in spreadsheet format. Here is the description of each spreadsheet.

| Worksheet Name | Worksheet Description                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------|
| AQS-Raw-Data   | Raw daily $PM_{2.5}$ data downloaded from the EPA AQS database. The data was imported into spreadsheet format.             |
| AQS-Raw-DV     | Raw $PM_{2.5}$ Design Value data downloaded from the EPA AQS database. The data was imported into spreadsheet format.      |
| Location       | Monitoring sites location information                                                                                      |
| DPM Max Value  | Data for Figure 3-3                                                                                                        |
| RSV            | Data for Table 3.5a 24-Hour and annual statistics at the Roseville, CA Sunrise Blvd.                                       |
| DPM            | Data for Table 3.5b 24-Hour and annual statistics at the Del Paso Manor monitor                                            |
| T-St           | Data for Table 3.5c 24-Hour and annual statistics at the T-Street monitor                                                  |
| SHD            | Data for Table 3.5d 24-Hour and annual statistics at the Sacramento Health Department                                      |
| WLD            | Data for Table 3.5e 24-Hour and annual statistics at the Woodland, CA Gibson Road                                          |
| T3-6           | Data for Table 3-6 Top PM <sub>2.5</sub> measurements during 2009-2012                                                     |
| F3-3           | Data for Figure 3-3 Monthly Average and Peak PM <sub>2.5</sub> Concentration Values for Del Paso Manor (Design Value Site) |
| F3-4           | Data for Figure 3-4 Annual 98th percentile 24-hour Average Concentration                                                   |
| F3-5           | Data for Figure 3-5 Maximum 24-hour Concentrations in the Region                                                           |

### **Appendix B: Emissions Inventory**

The 2011, 2017, and 2024 emission inventories are presented in various formats and details in this appendix.

**Appendix B1** contains the on-road motor vehicle  $PM_{2.5}$ ,  $NO_X$ , ROG, and  $SO_X$  emissions, vehicle population and activity Burden data generated using EMFAC2011 and transportation activity forecast data from the MTP/SCS2035<sup>1</sup>. It does not include CARB adjustments for recently adopted controls through January 2012. The list of adjustments is presented in Table B5.2.

**Appendix B2 (available separately in electronic file format)** contains the estimated  $PM_{2.5}$ ,  $NO_X$ , ROG, and SO<sub>X</sub> stationary, area-wide and off-road forecast summaries by EIC emission categories for the Sacramento Federal Nonattainment Area in CEPAM: NORCAL 2012  $PM_{2.5}$  SIP Baseline Emission Projections, Section a1 – Emission Projections With External Adjustments. It includes ERCs (2.0 tpd  $PM_{2.5}$ , 3.1 tpd  $NO_X$ , 0.6 tpd SO<sub>X</sub>, and 4.6 tpd VOC) and adopted controls through mid-2011. It does not include newly identified VOC emission sources: Heritage Dairy (0.1 tpd) and Jepson Prairie Composting (4.1 tpd). It also does not include reductions from PCAPCD Rule 242 - IC Engines, PCAPCD Rule 243 - Polyester Resin/Plastic Product Manufacturing, Carl Moyer and Prop 1B. These additional emissions and reductions are added to the inventory as external adjustments as shown in Tables B5.1 and B5.2.

**Appendix B3 (available separately in electronic file format)** contains the growth and control data used for emission forecasting stationary and area-wide sources in CARB's SIP planning projections model, CEPAM.

**Appendix B4 (available separately in electronic file format)** contains the summary of In-Use off-road equipment emissions, horsepower, population, and activity data for the Sacramento Federal Nonattainment Area using data outputs from the 2011 In-Use Off-Road Equipment model. Also available in electronic format are other off-road motor vehicles category specific methods and inventory models from CARB's website,

http://www.arb.ca.gov/msei/categories.htm#offroad\_motor\_vehicles.

For those off-road emissions categories not updated with new methods and data, such as lawn and garden equipment, data outputs from EMFAC2007 (available in electronic format) are used. These off-road emissions do not include CARB and district adjustments for recently adopted controls through January 2012. The list of adjustments is presented in Appendix B5.

**Appendix B5** contains recent emission inventory adjustments by the air districts and CARB. Unlike the emissions inventories presented in Chapter 4, Tables 4.1, 4.2a, and 4.2b, the inventories presented in Appendices B1 and B2 do not include CARB and district adjustments in Tables B5.1 and B5.2. District inventory adjustments for reductions from unaccounted district rules through mid-2011 and for emission source additions are shown in Table B5.1. CARB inventory adjustments for recently adopted controls through January 2012 are presented in Table B5.2. CARB off-road adjustment factors, which are incorporated into CEPAM – Emission Projections with External Adjustments, are available separately in electronic file format.

<sup>&</sup>lt;sup>1</sup> Metropolitan Transportation Plan/Sustainable Communities Strategy 2035, adopted by SACOG on April 19, 2012.

**Appendix B6** contains a summary description and inventory of  $PM_{2.5}$ ,  $NO_X$ , and VOC emission reduction credits (ERCs) listed by the individual air districts. Included are: 1) unused ERCs issued for reductions that occurred prior to the 2011 base year, 2) future bankable rice burning ERCs, and 3) Wood Stove/Fireplace Change-Out Incentive Program future ERC. The  $PM_{2.5}$ ,  $NO_X$ , and VOC ERC totals were added to the emission inventory forecast years in Chapter 4, Tables 4.1, 4.2a, and 4.2b, respectively.

**Appendix B7** contains detailed breakdown of directly emitted  $PM_{2.5}$  and  $PM_{2.5}$  precursors baseyear emissions and forecasts by chemical mass balance (CMB) source category. Emissions inventory projections by source category are used to forecast the contributions of each source category to ambient wintertime  $PM_{2.5}$  concentrations in 2011, 2017, and 2024.

### Appendix B1: On-Road Motor Vehicle Emissions Inventory

Appendix B1 contains the 2011, 2017, and 2024 on-road motor vehicle summer planning  $PM_{2.5}$ ,  $NO_{X}$ , ROG, and  $SO_X$  inventories, vehicle population, VMT, and trips for each EMFAC vehicle class category for the Sacramento federal nonattainment area. These updated motor vehicle emissions are based on ARB's EMFAC2011 emission factor model and the latest planning assumptions from SACOG's MTP/SCS 2035. Emissions tables by county are available separately in electronic file format. It does not include CARB adjustments for recently adopted controls through January 2012. The list of adjustments is presented in Table B5.2.

Appendix B1: 2011 On-Road Motor Vehicle Emissions Inventory - Sacramento Federal Nonattainment Area\_PM25 Summary

Version : Emfac2011 (EMFAC 2011 Vehicle Categories) Run Date : 2012/08/10 Scen Year: 2011

Scen Treat. 2011 Season : Winter Area : Sacramento Nonattainment Area [generated by SACOG, approximately EI Dorado (MC)+ Placer (SV & MC) + Sacramento + Yolo + Solano (SV)] Emissions: Toms Per Day

|             |                  | LDA -  | LDT1 - | LDT1 - | LDT2 -  | LDT2 - | MDV -   |           | LHDT1 - | LHDT1 - | LHDT2 - | LHDT2 - | MHDT - | MHDT - | HHDT - | HHDT - | OBUS - | OBUS - | SBUS - | SBUS - | UBUS - | UBUS - |          |          |         |         |
|-------------|------------------|--------|--------|--------|---------|--------|---------|-----------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|---------|---------|
|             | LDA - GAS        | DSL    | GAS    | DSL    | GAS     | DSL    | GAS     | MDV - DSL | GAS     | DSL     | GAS     | DSL     | GAS    | DSL    | GAS    | DSL    | GAS    | DSL    | GAS    | DSL    | GAS    | DSL    | MH - GAS | MH - DSL | MCY-GAS | ALL-TOT |
| Vehicles    | 721280           | 3094   | 106390 | 136    | 255798  | 121    | 229719  | 214       | 41855   | 30093   | 3326    | 6569    | 3890   | 15924  | 395    | 7152   | 1112   | 640    | 243    | 644    | 299    | 605    | 10000    | 1993     | 47402   | 1488893 |
| VMT/1000    | 27735            | 102    | 3845   | 4      | 10063   | 4      | 9303    | 9         | 1791    | 1290    | 141     | 286     | 159    | 816    | 30     | 1006   | 60     | 53     | 10     | 25     | 38     | 78     | 130      | 26       | 394     | 57397   |
| Trips       | 4533547          | 17958  | 647715 | 719    | 1612036 | 658    | 1450624 | 1251      | 623583  | 378536  | 49547   | 82625   | 77823  |        | 7909   |        | 50804  |        | 971    |        | 1194   | 2420   | 1000     | 199      | 94795   | 9635914 |
| Reactive O  | roanic Gas Emis  | ssions |        |        |         |        |         |           |         |         |         |         |        |        |        |        |        |        |        |        |        |        |          |          |         |         |
| Run Exh     | 2.22             | 0.01   | 0.78   | 0.00   | 0.86    | 0.00   | 1.05    | 0.00      | 0.57    | 0.38    | 0.05    | 0.08    | 0.11   | 0.40   | 0.07   | 0.66   | 0.02   | 0.04   | 0.03   | 0.02   | 0.04   | 0.05   | 0.06     | 0.01     | 1.42    | 8.91    |
| ldle Exh    | 0                | 0      | 0      | 0      | 0       | 0      | 0       | 0         | 0.03    | 0.00    | 0.00    | 0.00    | 0.01   | 0.01   | 0      | 0.11   | 0.00   | 0.00   | 0.00   | 0.00   | 0      | 0      | 0        | 0        | 0       | 0.16    |
| Start Ex    | 2.62             | 0      | 0.68   | 0      | 1.07    | 0      | 1.37    | 0         | 0.67    | 0       | 0.06    | 0       | 0.36   |        | 0.10   |        | 0.07   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.33    | 7.33    |
| Total Ex    | 4.83             | 0.01   | 1.47   | 0.00   | 1.93    | 0.00   | 2.41    | 0.00      | 1.27    | 0.39    | 0.11    | 0.08    | 0.48   | 0.41   | 0.18   | 0.78   | 0.09   | 0.04   | 0.04   | 0.02   | 0.04   | 0.05   | 0.07     | 0.01     | 1.75    | 16.44   |
| Diurpal     | 0.12             | 0      | 0.02   | 0      | 0.04    | 0      | 0.03    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.01    | 0.22    |
| Hot Soak    | 1.07             | 0      | 0.02   | 0      | 0.36    | 0      | 0.03    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.07    | 2 20    |
| Running     | 3.23             | 0      | 1.26   | 0<br>0 | 1.56    | 0      | 1.20    | ő         | 0.55    | Ő       | 0.04    | Ő       | 0.14   |        | 0.03   |        | 0.00   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.33    | 8.35    |
| Resting     | 0.05             | 0      | 0.01   | 0      | 0.01    | 0      | 0.01    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.00    | 0.08    |
| Total       | 9.30             | 0.01   | 3.07   | 0.00   | 3.90    | 0.00   | 3.94    | 0.00      | 1.88    | 0.39    | 0.16    | 0.08    | 0.65   | 0.41   | 0.22   | 0.78   | 0.11   | 0.04   | 0.04   | 0.02   | 0.05   | 0.05   | 0.07     | 0.01     | 2.17    | 27.37   |
|             |                  |        |        |        |         |        |         |           |         |         |         |         |        |        |        |        |        |        |        |        |        |        |          |          |         |         |
| Oxides of N | litrogen Emissio | ons    |        |        |         |        |         |           |         |         |         | _       |        |        |        | _      |        |        |        | _      |        |        |          |          |         |         |
| Run Exh     | 6.67             | 0.10   | 2.13   | 0.00   | 4.20    | 0.00   | 5.65    | 0.01      | 1.48    | 7.61    | 0.10    | 1.55    | 0.42   | 7.27   | 0.25   | 12.75  | 0.12   | 0.67   | 0.04   | 0.31   | 0.13   | 1.17   | 0.23     | 0.26     | 0.64    | 53.75   |
| Idle Exh    | 0                | 0      | 0      | 0      | 0       | 0      | 0       | 0         | 0.00    | 0.09    | 0.00    | 0.02    | 0.00   | 0.16   | 0      | 0.60   | 0.00   | 0.04   | 0.00   | 0.04   | 0      | 0      | 0 00     | 0        | 0       | 0.94    |
| Start Ex    | 1.76             | 0      | 0.36   | U      | 1.13    | 0      | 1.20    | U         | 1.40    | 0       | 0.12    | 0       | 0.23   |        | 0.03   |        | 0.11   |        | 0.00   |        | 0.01   | 0      | 0.00     | 0        | 0.03    | 6.54    |
| Total Ex    | 8.42             | 0.10   | 2.51   | 0.00   | 5.33    | 0.00   | 6.93    | 0.01      | 2.93    | 7.70    | 0.21    | 1.57    | 0.65   | 7.44   | 0.30   | 13.35  | 0.23   | 0.71   | 0.05   | 0.35   | 0.13   | 1.17   | 0.23     | 0.26     | 0.67    | 61.23   |
| Particulate | Matter 2.5       |        |        |        |         |        |         |           |         |         |         |         |        |        |        |        |        |        |        |        |        |        |          |          |         |         |
| Run Exh     | 0.07             | 0.01   | 0.02   | 0.00   | 0.03    | 0.00   | 0.03    | 0.00      | 0.01    | 0.08    | 0.00    | 0.02    | 0.00   | 0.24   | 0.00   | 0.43   | 0.00   | 0.02   | 0.00   | 0.01   | 0.00   | 0.02   | 0.00     | 0.01     | 0.00    | 0.98    |
| ldle Exh    | 0                | 0      | 0      | 0      | 0       | 0      | 0       | 0         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   | 0      | 0.01   | 0.00   | 0.00   | 0.00   | 0.00   | 0      | 0      | 0        | 0        | 0       | 0.02    |
| Start Ex    | 0.01             | 0      | 0.00   | 0      | 0.00    | 0      | 0.00    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   |        | 0.00   | 0      | 0.00     | 0        | 0.00    | 0.01    |
| Total Ex    | 0.09             | 0.01   | 0.03   | 0.00   | 0.03    | 0.00   | 0.03    | 0.00      | 0.01    | 0.08    | 0.00    | 0.02    | 0.00   | 0.24   | 0.00   | 0.44   | 0.00   | 0.02   | 0.00   | 0.01   | 0.00   | 0.02   | 0.00     | 0.01     | 0.00    | 1.04    |
| Tirowoor    | 0.06             | 0.00   | 0.01   | 0      | 0.02    | 0      | 0.02    | 0         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.01   | 0.00   | 0      | 0.00   | 0      | 0.00   | 0.00   | 0.00     | 0        | 0.00    | 0.12    |
| Breakwear   | 0.48             | 0.00   | 0.07   | 0      | 0.02    | 0      | 0.16    | 0         | 0.03    | 0.05    | 0.00    | 0.00    | 0.00   | 0.05   | 0.00   | 0.03   | 0.00   | 0.00   | 0.00   | 0.01   | 0.00   | 0.03   | 0.00     | 0.00     | 0.00    | 1 11    |
| Disakwear   | 0.10             | 0.00   | 0.01   | 0      | 0.11    | Ŭ      | 0.10    | Ű         | 0.00    | 0.00    | 0.00    | 0.01    | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.01   | 0.00   | 0.00   | 0.00     | 0.00     | 0.01    |         |
| Total       | 0.64             | 0.01   | 0.10   | 0.00   | 0.23    | 0.00   | 0.21    | 0.00      | 0.04    | 0.13    | 0.00    | 0.03    | 0.00   | 0.29   | 0.00   | 0.48   | 0.00   | 0.03   | 0.00   | 0.02   | 0.00   | 0.05   | 0.00     | 0.01     | 0.01    | 2.29    |
| Ouidan of C |                  |        |        |        |         |        |         |           |         |         |         |         |        |        |        |        |        |        |        |        |        |        |          |          |         |         |
| Daldes of S |                  | 0.00   | 0.02   | 0.00   | 0.05    | 0.00   | 0.06    | 0.00      | 0.02    | 0.01    | 0.00    | 0.00    | 0.00   | 0.01   | 0.00   | 0.02   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00     | 0.00     | 0.00    | 0.20    |
| Idle Exh    | 0.10             | 0.00   | 0.02   | 0.00   | 0.00    | 0.00   | 0.00    | 0.00      | 0.02    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.02   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00     | 0.00     | 0.00    | 0.29    |
| Start Ex    | 0.00             | 0      | 0.00   | 0      | 0.00    | 0      | 0.00    | 0         | 0.00    | 0.00    | 0.00    | 0.50    | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0      | 0.00     | 0        | 0.00    | 0.00    |
|             |                  |        |        |        |         |        |         |           |         |         |         |         |        |        |        |        |        |        |        |        |        |        |          |          |         |         |
| Total Ex    | 0.11             | 0.00   | 0.02   | 0.00   | 0.05    | 0.00   | 0.06    | 0.00      | 0.02    | 0.01    | 0.00    | 0.00    | 0.00   | 0.01   | 0.00   | 0.02   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00     | 0.00     | 0.00    | 0.30    |

Appendix B1: 2017 On-Road Motor Vehicle Emissions Inventory - Sacramento Federal Nonattainment Area\_PM25 Summary

Version : Emfac2011 (EMFAC 2011 Vehicle Categories) Run Date : 2012/05/09 Scen Year: 2017

Scen Treat. 2017 Season : Winter Area : Sacramento Nonattainment Area [generated by SACOG, approximately El Dorado (MC)+ Placer (SV & MC) + Sacramento + Yolo + Solano (SV)] Emissions: Toms Per Day

| Vehicles<br>VMT/1000<br>Trips | 756809<br>29869<br>4783847 | 3254  | UA0    | DOL  | 1-0-5   | DSI  | GAS A   |           | GAS    | DSI    | GAS   | DSI   | GAS   | DSI   | GAS  | DSI  | GAS   | 0000 | GAS  | DSI  | GAS  | DSI  | MH. GAS  | MH. DSI  | MCY-GAS |          |
|-------------------------------|----------------------------|-------|--------|------|---------|------|---------|-----------|--------|--------|-------|-------|-------|-------|------|------|-------|------|------|------|------|------|----------|----------|---------|----------|
| Vehicles<br>VMT/1000<br>Trips | 756809<br>29869<br>4783847 | 3254  |        |      | U.L.    | DOL  | OAD II  | IDV - DOL | UA0    | DOL    | OAU   | DOL   | UAU   | DOL   | ONO  | DOL  | OAU   | DOL  | UA0  | DOL  | U.L. | DOL  | MIT- OAO | MIT- DOL | MOT-OAO | ALL-IOI  |
| VMT/1000<br>Trips             | 29869<br>4783847           |       | 111961 | 143  | 269076  | 127  | 241113  | 224       | 43868  | 31655  | 3492  | 6914  | 4052  | 19598 | 367  | 8997 | 1162  | 793  | 243  | 696  | 297  | 605  | 10327    | 2076     | 49467   | 1567315  |
| Trips                         | 4783847                    | 119   | 4172   | 5    | 10761   | 5    | 9369    | 9         | 1827   | 1307   | 145   | 282   | 194   | 1007  | 50   | 1294 | 55    | 62   | 10   | 26   | 37   | 78   | 137      | 26       | 426     | 61275    |
|                               |                            | 19768 | 683736 | 801  | 1694630 | 772  | 1497798 | 1343      | 653563 | 398175 | 52030 | 86970 | 81067 |       | 7334 |      | 53050 |      | 973  |      | 1187 | 2420 | 1033     | 208      | 98923   | 10119627 |
| Reactive Orga                 | anic Gas Emis              | sions |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Run Exh                       | 0.71                       | 0.00  | 0.26   | 0.00 | 0.33    | 0.00 | 0.62    | 0.00      | 0.33   | 0.31   | 0.02  | 0.06  | 0.04  | 0.20  | 0.03 | 0.31 | 0.01  | 0.01 | 0.02 | 0.01 | 0.03 | 0.04 | 0.02     | 0.01     | 1.33    | 4.68     |
| ldle Exh                      | 0                          | 0     | 0      | 0    | 0       | 0    | 0       | 0         | 0.03   | 0.00   | 0.00  | 0.00  | 0.01  | 0.00  | 0    | 0.15 | 0.00  | 0.00 | 0.00 | 0.00 | 0    | 0    | 0        | 0        | 0       | 0.19     |
| Start Ex                      | 1.04                       | 0     | 0.36   | 0    | 0.52    | 0    | 0.95    | 0         | 0.53   | 0      | 0.04  | 0     | 0.16  |       | 0.04 |      | 0.05  |      | 0.00 |      | 0.01 | 0    | 0.00     | 0        | 0.31    | 4.01     |
| Total Ex                      | 1.74                       | 0.00  | 0.62   | 0.00 | 0.85    | 0.00 | 1.57    | 0.00      | 0.88   | 0.32   | 0.05  | 0.06  | 0.21  | 0.20  | 0.07 | 0.46 | 0.06  | 0.01 | 0.02 | 0.01 | 0.04 | 0.04 | 0.02     | 0.01     | 1.64    | 8.89     |
|                               |                            |       |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Diurnal                       | 0.07                       | 0     | 0.03   | 0    | 0.04    | 0    | 0.04    | 0         | 0.00   | 0      | 0.00  | 0     | 0.00  |       | 0.00 |      | 0.00  |      | 0.00 |      | 0.00 | 0    | 0.00     | 0        | 0.02    | 0.19     |
| Hot Soak                      | 0.62                       | 0     | 0.20   | 0    | 0.28    | 0    | 0.34    | 0         | 0.08   | 0      | 0.01  | 0     | 0.01  |       | 0.00 |      | 0.00  |      | 0.00 |      | 0.00 | 0    | 0.00     | 0        | 0.05    | 1.59     |
| Running                       | 1.65                       | 0     | 0.87   | 0    | 1.08    | 0    | 1.29    | 0         | 0.54   | 0      | 0.03  | 0     | 0.06  |       | 0.01 |      | 0.02  |      | 0.00 |      | 0.00 | 0    | 0.00     | 0        | 0.20    | 5.75     |
| Resting                       | 0.04                       | 0     | 0.01   | 0    | 0.02    | 0    | 0.03    | 0         | 0.00   | 0      | 0.00  | U     | 0.00  |       | 0.00 |      | 0.00  |      | 0.00 |      | 0.00 | 0    | 0.00     | U        | 0.01    | 0.11     |
| Total                         | 4.13                       | 0.00  | 1.74   | 0.00 | 2.27    | 0.00 | 3.26    | 0.00      | 1.50   | 0.32   | 0.09  | 0.06  | 0.28  | 0.20  | 0.08 | 0.46 | 0.08  | 0.01 | 0.03 | 0.01 | 0.04 | 0.04 | 0.02     | 0.01     | 1.91    | 16.54    |
| Ovides of Nitr                |                            | ne    |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Run Exh                       | 3.38                       | 0.06  | 1.16   | 0.00 | 2.08    | 0.00 | 3.63    | 0.00      | 0.96   | 5.21   | 0.06  | 1.05  | 0.21  | 4.10  | 0.27 | 7.00 | 0.07  | 0.38 | 0.03 | 0.30 | 0.12 | 0.98 | 0.13     | 0.22     | 0.64    | 32.02    |
| Idle Exh                      | 0                          | 0     | 0      | 0    | 0       | 0    | 0       | 0         | 0.00   | 0.09   | 0.00  | 0.02  | 0.00  | 0.15  | 0    | 0.90 | 0.00  | 0.03 | 0.00 | 0.04 | 0    | 0    | 0        | 0        | 0       | 1.22     |
| Start Ex                      | 0.81                       | 0     | 0.23   | 0    | 0.58    | 0    | 0.91    | 0         | 1.39   | 0      | 0.10  | 0     | 0.17  |       | 0.03 |      | 0.10  |      | 0.00 |      | 0.01 | 0    | 0.00     | 0        | 0.04    | 4.37     |
| Total Ex                      | 4.18                       | 0.06  | 1.39   | 0.00 | 2.65    | 0.00 | 4.54    | 0.00      | 2.35   | 5.30   | 0.16  | 1.07  | 0.38  | 4.24  | 0.31 | 7.90 | 0.16  | 0.41 | 0.03 | 0.33 | 0.13 | 0.98 | 0.13     | 0.22     | 0.68    | 37.63    |
|                               |                            |       |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Particulate Ma                | atter 2.5                  |       |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Run Exh                       | 0.05                       | 0.00  | 0.01   | 0.00 | 0.02    | 0.00 | 0.02    | 0.00      | 0.00   | 0.06   | 0.00  | 0.01  | 0.00  | 0.09  | 0.00 | 0.10 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00     | 0.00     | 0.00    | 0.40     |
| Idle Exh                      | 0.01                       | 0     | 0.00   | 0    | 0.00    | 0    | 0.01    | 0         | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0    | 0.00     | 0        | 0.00    | 0.00     |
| _                             |                            |       |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Total Ex                      | 0.06                       | 0.00  | 0.02   | 0.00 | 0.02    | 0.00 | 0.03    | 0.00      | 0.01   | 0.06   | 0.00  | 0.01  | 0.00  | 0.09  | 0.00 | 0.10 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00     | 0.00     | 0.00    | 0.43     |
| Tirewear                      | 0.07                       | 0.00  | 0.01   | 0    | 0.02    | 0    | 0.02    | 0         | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.01 | 0.00  | 0    | 0.00 | 0    | 0.00 | 0.00 | 0.00     | 0        | 0.00    | 0.14     |
| Breakwear                     | 0.52                       | 0.00  | 0.07   | 0    | 0.19    | 0    | 0.16    | 0         | 0.03   | 0.05   | 0.00  | 0.01  | 0.00  | 0.06  | 0.00 | 0.03 | 0.00  | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00     | 0.00     | 0.01    | 1.19     |
|                               | 0.05                       | 0.00  | 0.40   | 0.00 | 0.00    | 0.00 | 0.04    | 0.00      | 0.04   | 0.40   | 0.00  | 0.02  | 0.00  | 0.40  | 0.00 | 0.45 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.05 | 0.00     | 0.04     | 0.04    |          |
| lotal                         | 0.65                       | 0.00  | 0.10   | 0.00 | 0.23    | 0.00 | 0.21    | 0.00      | 0.04   | 0.12   | 0.00  | 0.03  | 0.00  | 0.16  | 0.00 | 0.15 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.05 | 0.00     | 0.01     | 0.01    | 1.78     |
| Oxides of Sulf                | fur Emissions              |       |        |      |         |      |         |           |        |        |       |       |       |       |      |      |       |      |      |      |      |      |          |          |         |          |
| Run Exh                       | 0.11                       | 0.00  | 0.02   | 0.00 | 0.05    | 0.00 | 0.06    | 0.00      | 0.02   | 0.01   | 0.00  | 0.00  | 0.00  | 0.01  | 0.00 | 0.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00     | 0.00    | 0.31     |
| ldle Exh                      | 0                          | 0     | 0      | 0    | 0       | 0    | 0       | 0         | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0    | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0    | 0    | 0        | 0        | 0       | 0.00     |
| Start Ex                      | 0.00                       | 0     | 0.00   | 0    | 0.00    | 0    | 0.00    | 0         | 0.00   | 0      | 0.00  | 0     | 0.00  |       | 0.00 |      | 0.00  |      | 0.00 |      | 0.00 | 0    | 0.00     | 0        | 0.00    | 0.01     |
| Total Ex                      | 0.11                       | 0.00  | 0.02   | 0.00 | 0.06    | 0.00 | 0.06    | 0.00      | 0.02   | 0.01   | 0.00  | 0.00  | 0.0   | 0.01  | 0.00 | 0.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00     | 0.00    | 0.32     |

Appendix B1: 2024 On-Road Motor Vehicle Emissions Inventory - Sacramento Federal Nonattainment Area\_PM25 Summary

Version : Emfac2011 (EMFAC 2011 Vehicle Categories) Run Date : 2012/05/09 Scen Year: 2024

Scen I real. 2024 Season : Winter Area : Sacramento Nonattainment Area [generated by SACOG, approximately El Dorado (MC)+ Placer (SV & MC) + Sacramento + Yolo + Solano (SV)] Emissions: Toms Per Day

|              |                   | LDA -            | LDT1 -                   | LDT1 -         | LDT2 -         | LDT2 -          | MDV -          |                | LHDT1 -        | LHDT1 -     | LHDT2 -          | LHDT2 - | MHDT -     | MHDT -       | HHDT -           | HHDT -         | OBUS -            | OBUS - | SBUS -        | SBUS -  | UBUS - | UBUS - |          |          |          |          |
|--------------|-------------------|------------------|--------------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-------------|------------------|---------|------------|--------------|------------------|----------------|-------------------|--------|---------------|---------|--------|--------|----------|----------|----------|----------|
|              | LDA - GAS         | DSL              | GAS                      | DSL            | GAS            | DSL             | GAS            | MDV - DSL      | GAS            | DSL         | GAS              | DSL     | GAS        | DSL          | GAS              | DSL            | GAS               | DSL    | GAS           | DSL     | GAS    | DSL    | MH - GAS | MH - DSI | MCY-GAS  | ALL-TOT  |
| Vehicles     | 820373            | 3528             | 121692                   | 156            | 288220         | 136             | 257365         | 239            | 46641          | 33640       | 3810             | 7528    | 4356       | 21256        | 359              | 9997           | 1265              | 843    | 260           | 699     | 317    | 647    | 11010    | 221      | 54242    | 1690795  |
| VMT/1000     | 32143             | 126              | 4491                     | 6              | 11409          | 5               | 9899           | 9              | 1923           | 1376        | 157              | 306     | 207        | 1136         | 46               | 1485           | 58                | 70     | 11            | 25      | 40     | 83     | 14       | 5 28     | 468      | 65654    |
| Trips        | 5189909           | 21898            | 740260                   | 922            | 1813170        | 838             | 1580206        | 1475           | 694875         | 423147      | 56757            | 94689   | 87162      |              | 7180             |                | 57767             |        | 1040          |         | 1269   | 2587   | 110      | 222      | 2 108473 | 10884947 |
| Reactive O   | manic Gas Emis    | ssions           |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Run Exh      | 0.37              | 0.00             | 0.11                     | 0.00           | 0.17           | 0.00            | 0.31           | 0.00           | 0.15           | 0.23        | 0.00             | 0.05    | 0.01       | 0.14         | 0.02             | 0.33           | 0.00              | 0.01   | 0.01          | 0.00    | 0.03   | 0.04   | 0.0      | 0.0      | 1.37     | 3.38     |
| ldle Exh     | 0                 | 0                | 0                        | 0              | 0              | 0               | 0              | 0              | 0.03           | 0.00        | 0.00             | 0.00    | 0.01       | 0.00         | 0                | 0.20           | 0.00              | 0.00   | 0.00          | 0.00    | 0      | 0      | (        | ) (      | 0 0      | 0.25     |
| Start Ex     | 0.56              | 0                | 0.20                     | 0              | 0.28           | 0               | 0.57           | 0              | 0.37           | 0           | 0.02             | 0       | 0.08       |              | 0.01             |                | 0.04              |        | 0.00          |         | 0.01   | 0      | 0.0      | ) (      | 0.32     | 2.47     |
| Total Ex     | 0.93              | 0.00             | 0.32                     | 0.00           | 0.45           | 0.00            | 0.88           | 0.00           | 0.55           | 0.24        | 0.03             | 0.05    | 0.10       | 0.15         | 0.03             | 0.53           | 0.04              | 0.02   | 0.02          | 0.01    | 0.03   | 0.04   | 0.0      | 0.0      | 1.69     | 6.10     |
| Diurpol      | 0.05              | 0                | 0.02                     | 0              | 0.03           | 0               | 0.05           | 0              | 0.00           | 0           | 0.00             | 0       | 0.00       |              | 0.00             |                | 0.00              |        | 0.00          |         | 0.00   | 0      | 0.0      |          | 0.02     | 0.17     |
| Hot Soak     | 0.05              | 0                | 0.02                     | 0              | 0.03           | 0               | 0.34           | 0              | 0.00           | 0           | 0.00             | 0       | 0.00       |              | 0.00             |                | 0.00              |        | 0.00          |         | 0.00   | 0      | 0.0      |          | 0.02     | 1 24     |
| Running      | 1.27              | 0                | 0.67                     | 0              | 0.89           | 0<br>0          | 1.25           | ő              | 0.52           | Ő           | 0.03             | Ő       | 0.04       |              | 0.00             |                | 0.02              |        | 0.00          |         | 0.00   | ő      | 0.0      |          | 0.18     | 4.87     |
| Resting      | 0.03              | 0                | 0.01                     | 0              | 0.02           | 0               | 0.03           | 0              | 0.00           | 0           | 0.00             | 0       | 0.00       |              | 0.00             |                | 0.00              |        | 0.00          |         | 0.00   | 0      | 0.0      |          | 0.01     | 0.10     |
| Total        | 2.66              | 0.00             | 1.18                     | 0.00           | 1.62           | 0.00            | 2.55           | 0.00           | 1.15           | 0.24        | 0.06             | 0.05    | 0.14       | 0.15         | 0.04             | 0.53           | 0.06              | 0.02   | 0.02          | 0.01    | 0.04   | 0.04   | 0.0      | 0.0      | 1.94     | 12.50    |
|              |                   |                  |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Oxides of N  | litrogen Emissio  | ons              |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Run Exh      | 2.54              | 0.05             | 0.70                     | 0.00           | 1.28           | 0.00            | 2.24           | 0.00           | 0.60           | 3.28        | 0.03             | 0.65    | 0.09       | 1.47         | 0.24             | 3.41           | 0.03              | 0.12   | 0.02          | 0.23    | 0.10   | 0.93   | 0.0      | 0.18     | 3 0.69   | 18.96    |
| ldle Exh     | 0                 | 0                | 0                        | 0              | 0              | 0               | 0              | 0              | 0.00           | 0.10        | 0.00             | 0.02    | 0.00       | 0.09         | 0                | 1.02           | 0.00              | 0.02   | 0.00          | 0.03    | 0      | 0      | (        | ) (      | 0 0      | 1.28     |
| Start Ex     | 0.46              | 0                | 0.14                     | 0              | 0.29           | 0               | 0.56           | 0              | 1.25           | 0           | 0.09             | 0       | 0.12       |              | 0.03             |                | 0.07              |        | 0.00          |         | 0.01   | 0      | 0.0      | ) (      | 0.04     | 3.07     |
| Total Ex     | 3.00              | 0.05             | 0.85                     | 0.00           | 1.57           | 0.00            | 2.80           | 0.00           | 1.85           | 3.38        | 0.13             | 0.67    | 0.21       | 1.56         | 0.27             | 4.44           | 0.10              | 0.14   | 0.03          | 0.26    | 0.11   | 0.93   | 0.0      | 0.1      | 0.73     | 23.32    |
| Particulate  | Matter 2.5        |                  |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Run Exh      | 0.06              | 0.00             | 0.01                     | 0.00           | 0.02           | 0.00            | 0.02           | 0.00           | 0.00           | 0.05        | 0.00             | 0.01    | 0.00       | 0.04         | 0.00             | 0.10           | 0.00              | 0.00   | 0.00          | 0.00    | 0.00   | 0.02   | 0.0      | 0.00     | 0.00     | 0.33     |
| ldle Exh     | 0                 | 0                | 0                        | 0              | 0              | 0               | 0              | 0              | 0.00           | 0.00        | 0.00             | 0.00    | 0.00       | 0.00         | 0                | 0.00           | 0.00              | 0.00   | 0.00          | 0.00    | 0      | 0      | (        | ) (      | 0 0      | 0.00     |
| Start Ex     | 0.02              | 0                | 0.00                     | 0              | 0.01           | 0               | 0.01           | 0              | 0.00           | 0           | 0.00             | 0       | 0.00       |              | 0.00             |                | 0.00              |        | 0.00          |         | 0.00   | 0      | 0.0      | ) (      | 0.00     | 0.04     |
| Total Ex     | 0.08              | 0.00             | 0.01                     | 0.00           | 0.03           | 0.00            | 0.03           | 0.00           | 0.00           | 0.05        | 0.00             | 0.01    | 0.00       | 0.04         | 0.00             | 0.10           | 0.00              | 0.00   | 0.00          | 0.00    | 0.00   | 0.02   | 0.0      | 0.00     | 0.00     | 0.38     |
| Tiroupor     | 0.07              | 0.00             | 0.01                     | 0              | 0.02           | 0               | 0.02           | 0              | 0.00           | 0.00        | 0.00             | 0.00    | 0.00       | 0.00         | 0.00             | 0.01           | 0.00              | 0      | 0.00          | 0       | 0.00   | 0.00   | 0.0      |          | 0.00     | 0.15     |
| Breakwear    | 0.56              | 0.00             | 0.08                     | 0              | 0.20           | 0               | 0.17           | 0.0001         | 0.03           | 0.05        | 0.00             | 0.01    | 0.00       | 0.07         | 0.00             | 0.04           | 0.00              | 0.00   | 0.00          | 0.01    | 0.00   | 0.03   | 0.0      | 0.00     | 0.01     | 1 27     |
| Brouittiour  |                   |                  |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Total        | 0.71              | 0.00             | 0.10                     | 0.00           | 0.25           | 0.00            | 0.22           | 0.00           | 0.04           | 0.10        | 0.00             | 0.02    | 0.00       | 0.11         | 0.00             | 0.16           | 0.00              | 0.01   | 0.00          | 0.01    | 0.00   | 0.05   | 0.0      | 0.01     | 0.01     | 1.82     |
| 0.11.1.1.1.1 |                   |                  |                          |                |                |                 |                |                |                |             |                  |         |            |              |                  |                |                   |        |               |         |        |        |          |          |          |          |
| Dup Evb      |                   | 0.00             | 0.02                     | 0.00           | 0.06           | 0.00            | 0.06           | 0.00           | 0.02           | 0.01        | 0.00             | 0.00    | 0.00       | 0.01         | 0.00             | 0.02           | 0.00              | 0.00   | 0.00          | 0.00    | 0.00   | 0.00   | 0.0      | 0.00     | 0.00     | 0.22     |
| Idle Exh     | 0.12              | 0.00             | 0.02                     | 0.00           | 0.00           | 0.00            | 0.00           | 0.00           | 0.02           | 0.00        | 0.00             | 0.00    | 0.00       | 0.00         | 0.00             | 0.02           | 0.00              | 0.00   | 0.00          | 0.00    | 0.00   | 0.00   | 0.01     | ) (      | ) 0.00   | 0.33     |
| Start Ex     | 0.00              | 0                | 0.00                     | 0              | 0.00           | 0               | 0.00           | 0              | 0.00           | 0           | 0.00             | 0       | 0.00       | 2.50         | 0.00             | 2.50           | 0.00              | 1.50   | 0.00          | 2.50    | 0.00   | 0      | 0.0      | ) (      | 0.00     | 0.01     |
| Total Fx     | 0.12              | 0.00             | 0.02                     | 0.00           | 0.06           | 0.00            | 0.06           | 0.00           | 0.02           | 0.01        | 0.00             | 0.00    | 0.00       | 0.01         | 0.00             | 0.03           | 0.00              | 0.00   | 0.00          | 0.00    | 0.00   | 0.00   | 0.0      | 0.00     | 0.00     | 0 34     |
| Source: SAC  | OG (Rinu Abraham) | ) o mail (transm | 20.02<br>nitted on May 1 | 7 2012) provid | ng 2014 2017 2 | 2024 on road of | mineione based | on VMT forecon | sts in SACOG's | MTD/SCS2026 | for all props or | c.50    | SACOG (Bin | (Abrohom) om | oil (transmitted | on Contombor 1 | 12, 2012) providi | 0.00   | 2024 Selano/S | () data | 0.00   | 0.00   | 5.0      | 5.00     | 0.00     | 0.04     |

October 24, 2013

### Appendix B5: Recent Emission Inventory Adjustments

Emission inventory adjustments presented in this appendix include recent changes by the air districts and CARB, and are not reflected in Appendices B1 and B2. These emission changes are due to: 1) recently adopted control measures through January 2012 for mobile sources, and 2) unaccounted adopted control measures through mid-2011 and additional emissions for stationary and area-wide sources. Tables B5.1 and B5.2 contain a summary of the district and CARB emission inventory adjustments, respectively. CARB off-road adjustment factors, which are incorporated into CEPAM – Emission Projections with External Adjustments, are available separately in electronic file format.

### Table B5.1. District Emission Inventory Adjustments in Sacramento Nonattainment Area

| District Rule/Category/Source                            | Adoption | Implement | VOC Er | nanges <sup>1</sup> |                          |
|----------------------------------------------------------|----------|-----------|--------|---------------------|--------------------------|
|                                                          | Year     | Year      | 2011   | 2017                | <b>2024</b> <sup>2</sup> |
| PCAPCD-243 Polyester Resin/Plastic Product Manufacturing | 2003     | 2003      | -0.194 | -0.222              | -0.236                   |
| Added Heritage Dairy (Yolo-Solano)                       |          |           | 0.105  | 0.105               | 0.105                    |
| Added Jepson Composting (Yolo-Solano)                    |          |           | 4.110  | 4.110               | 4.110                    |
| Total District Adjustments                               |          |           | 4.021  | 3.992               | 3.979                    |

| District Rule/Category/Source      | Adoption | Implement | NO <sub>X</sub> En | nission Ch<br>(TPD) | anges <sup>1</sup>       |
|------------------------------------|----------|-----------|--------------------|---------------------|--------------------------|
|                                    | rear     | rear      | 2011               | 2017                | <b>2024</b> <sup>2</sup> |
| PCAPCD-242 IC Engines <sup>3</sup> | 2003     | 2003      | -0.033             | -0.026              | -0.023                   |
| Total District Adjustments         |          |           | -0.033             | -0.026              | -0.023                   |

These changes are included in Chapter 4, Tables 4.1, 4.2a, and 4.2 b. These changes are not included in the detailed inventories contained in Appendix B2.

<sup>2</sup> 2020 Emission adjustments are assumed for 2024.

<sup>3</sup> PCAPCD Rule 242 was adopted on April 10, 2003 and submitted to EPA for approval on December 17, 2010. EPA approved the Rule into the SIP effective on January 3, 2012 (76 FR 67366, 11/01/2011).

| PM <sub>2.5</sub> Implementation | on/Maintenance Pla | an and               |                 |      |
|----------------------------------|--------------------|----------------------|-----------------|------|
| Re-designation Rec               | quest for Sacramer | to PM <sub>2.5</sub> | Nonattainment A | Area |

| Table B5.2. CARB Emission Inventory Adjustments in Sacramento Nonattainment Area |                      |              |            |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------|--------------|------------|--|--|--|--|--|
| CARB Rule/Category                                                               | PM <sub>2.5</sub> Em | ission Chang | ges* (TPD) |  |  |  |  |  |
|                                                                                  | 2011                 | 2017         | 2024       |  |  |  |  |  |
| On-Road Emission Inventory                                                       | •                    | 1            | 1          |  |  |  |  |  |
| RFG                                                                              | 0.00                 | 0.00         | 0.00       |  |  |  |  |  |
| Prop 1B                                                                          | -0.04                | 0.00         | 0.00       |  |  |  |  |  |
| Moyer                                                                            | -0.01                | 0.00         | 0.00       |  |  |  |  |  |
| AB1493                                                                           | 0.00                 | -0.02        | -0.04      |  |  |  |  |  |
| Smog Check                                                                       | 0.00                 | 0.00         | 0.00       |  |  |  |  |  |
| ACC                                                                              | 0.00                 | -0.03        | -0.12      |  |  |  |  |  |
| Off-Road Emission Inventory                                                      |                      | -            | 1          |  |  |  |  |  |
| Carl Moyer                                                                       | -0.08                | -0.02        | 0.00       |  |  |  |  |  |
| Prop 1-B                                                                         | -0.04                | -0.01        | -0.01      |  |  |  |  |  |
| Areawide Emission Inventory                                                      |                      |              |            |  |  |  |  |  |
| Paved Road Dust                                                                  | -0.15                | -0.20        | -0.11      |  |  |  |  |  |
| Summary                                                                          | -0.31                | -0.27        | -0.27      |  |  |  |  |  |
|                                                                                  |                      |              |            |  |  |  |  |  |
|                                                                                  | NOx Emi              | ssion Chang  | jes* (TPD) |  |  |  |  |  |
| CARB Rule/Calegoly                                                               | 2011                 | 2017         | 2024       |  |  |  |  |  |
| On-Road Emission Inventory                                                       |                      |              |            |  |  |  |  |  |
| RFG                                                                              | 0.00                 | 0.00         | 0.00       |  |  |  |  |  |
| Prop 1B                                                                          | -0.82                | 0.00         | 0.00       |  |  |  |  |  |
| Moyer                                                                            | -0.10                | -0.04        | 0.00       |  |  |  |  |  |
| AB1493                                                                           | 0.00                 | -0.01        | -0.01      |  |  |  |  |  |
| Smog Check                                                                       | 0.00                 | -0.35        | -0.21      |  |  |  |  |  |
| ACC                                                                              | 0.00                 | -0.15        | -0.99      |  |  |  |  |  |
| Off-Road Emission Inventory                                                      | -                    |              |            |  |  |  |  |  |
| Carl Moyer                                                                       | -1.95                | -0.38        | 0.00       |  |  |  |  |  |
| Prop 1-B                                                                         | -0.84                | -0.07        | -0.07      |  |  |  |  |  |
| Summary                                                                          | -3.71                | -0.99        | -1.28      |  |  |  |  |  |
|                                                                                  |                      |              |            |  |  |  |  |  |
|                                                                                  | VOC Emi              | ssion Chang  | ges* (TPD) |  |  |  |  |  |
| CARB Rule/Calegory                                                               | 2011                 | 2017         | 2024       |  |  |  |  |  |
| On-Road Emission Inventory                                                       |                      |              |            |  |  |  |  |  |
| RFG                                                                              | 0.00                 | -1.28        | -0.65      |  |  |  |  |  |
| Prop 1B                                                                          | 0.00                 | 0.00         | 0.00       |  |  |  |  |  |
| Moyer                                                                            | 0.00                 | 0.00         | 0.00       |  |  |  |  |  |
| AB1493                                                                           | -0.02                | -0.28        | -0.62      |  |  |  |  |  |
| Smog Check                                                                       | 0.00                 | -0.42        | -0.29      |  |  |  |  |  |
| ACC                                                                              | 0.00                 | -0.07        | -0.09      |  |  |  |  |  |
| Off-Road Emission Inventory                                                      |                      |              |            |  |  |  |  |  |
| Carl Moyer                                                                       | -0.19                | -0.03        | -0.01      |  |  |  |  |  |
| Summary                                                                          | -0.21                | -2.09        | -1.65      |  |  |  |  |  |

\*These changes, which include recently adopted control measures up to January 2012, are included in Chapter 4, Table 4.1, Table 4.2a and Table 4.2b. These changes are not included in the detailed inventories contained in Appendix B1 for on-road and Appendices B2 and B4 for off-road.

Appendix B5: Recent Emissions Inventory Adjustments Page B5-3

### Appendix B6: Emission Reduction Credits (ERCs)

### Unused ERCs Issued for Reductions

Certain pollutant emission reductions due to equipment shutdown or voluntary control may be converted to emission reduction credits (ERCs) and registered with the air districts. These ERCs may then be used as "offsets" to compensate for an increase in emissions from a new or modified major emission source regulated by the air districts. Unused ERCs are considered as potential future emissions supplemental to the forecasted emissions inventory.

The amounts of unused ERCs from stationary sources by air district in Table B6.1. They are included in the emissions forecasts to ensure the potential future use of these credits does not interfere with the continued attainment of the 24-hour  $PM_{2.5}$  NAAQS. Since reductions in rice burning in Yolo-Solano air district are banked under Rule 3.21 Rice Straw Emission Reduction Credits, they are included under unused banked ERC. These ERCs are included to maintain the validity of previously banked ERCs and other reductions.

### Future Bankable Rice Burning Emission Reduction Credits

California legislation<sup>2</sup> in 1991 (known as the Connelly bill) required rice farmers to phase down rice field burning on an annual basis, beginning in 1992. A burn cap of 125,000 acres in the Sacramento Valley Air Basin was established, and growers with 400 acres or less were granted the option to burn their entire acreage once every four years. Since the rice burning reductions were mandated by state law, they would ordinarily not be "surplus" and eligible for banking. However, the Connelly bill included a special provision declaring that the reductions are qualified for banking if they meet the State and local banking rules.

Reduction in rice burning may be banked in the future under ERC rules<sup>3</sup> under development in Sacramento and Placer air districts. The total amounts of potential bankable rice burning ERCs in the SFNA-PM<sub>2.5</sub> are added to the total ERCs.

The amounts of future bankable rice burning ERCs for the Sacramento nonattainment area are listed by air district in Table B6.2. They are included in the emissions forecasts to ensure the potential future use of these credits does not interfere the maintenance of the 24-hour  $PM_{2.5}$  NAAQS.

### Available Wood Stove/Fireplace Change-Out Incentive Program Emission Reduction Credits

The Sacramento County's Wood Stove/Fireplace Change-Out Incentive Program was established in June 2006 to provide financial incentives to remove or replace existing fireplaces and dirty wood stoves. Part of the funding for this incentive program comes from Sacramento County's Solutions for the Environment and Economic Development (SEED) program. One of the SEED program requirements is the revenue generated from ERCs be used to replenish the

<sup>&</sup>lt;sup>2</sup> Connelly-Areias-Chandler Rice Straw Burning Reduction Act of 1991, section 41865 of California Health and Safety Code.

<sup>&</sup>lt;sup>3</sup> This rice burning ERC rule must be approved by EPA into the SIP for the rice ERCs to be used for compliance with federal air quality requirements.

### El Dorado County AQMD Board Hearing December 3, 2013

| PM <sub>2.5</sub> Implementation/Maintenance Plan and                     |  |
|---------------------------------------------------------------------------|--|
| Re-designation Request for Sacramento PM <sub>25</sub> Nonattainment Area |  |

October 24, 2013

ERC bank. The emissions reductions generated using SEED revenue in this incentive program must be banked as ERCs. About half of the emission reductions from this program will be available for the ERC bank. These ERCs from the Wood Stove/Fireplace Change-Out Incentive Program from Sacramento County, presented in Table B6.3, are also added to the total ERCs.

----

| l able Bo.1                                                                              |                   |     |                 |     |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------|-----|-----------------|-----|--|--|--|--|--|--|--|--|
| Summary of Unused Banked Emission Reduction Credits In the Sacramento Nonattainment Area |                   |     |                 |     |  |  |  |  |  |  |  |  |
| ERC tons/day (winter average day)                                                        |                   |     |                 |     |  |  |  |  |  |  |  |  |
| Air District <sup>a</sup>                                                                | PM <sub>2.5</sub> | SOx | NO <sub>X</sub> | VOC |  |  |  |  |  |  |  |  |
| Sacramento                                                                               | 0.1               | 0.2 | 1.6             | 2.9 |  |  |  |  |  |  |  |  |
| Yolo-Solano                                                                              | 1.0               | 0.2 | 0.7             | 0.7 |  |  |  |  |  |  |  |  |
| Placer                                                                                   | 0.5               | 0.1 | 0.5             | 0.6 |  |  |  |  |  |  |  |  |
| Total                                                                                    | 1.6               | 0.6 | 2.8             | 4.3 |  |  |  |  |  |  |  |  |

<sup>a</sup> There are no ERCs for EI Dorado County AQMD. Rice ERCs from Yolo-Solano which are banked under Rule 3.21 are included here.

| Table B6.2                                                                           |                    |      |                 |      |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------|------|-----------------|------|--|--|--|--|--|--|--|--|
| Summary of Future Bankable Rice Burning Emission Reduction Credits In the Sacramento |                    |      |                 |      |  |  |  |  |  |  |  |  |
|                                                                                      | Nonattainment Area |      |                 |      |  |  |  |  |  |  |  |  |
| ERC tons/day (winter average day)                                                    |                    |      |                 |      |  |  |  |  |  |  |  |  |
| Air District <sup>a</sup>                                                            | PM <sub>2.5</sub>  | SOx  | NO <sub>x</sub> | VOC  |  |  |  |  |  |  |  |  |
| Sacramento                                                                           | 0.10               | 0.02 | 0.09            | 0.08 |  |  |  |  |  |  |  |  |
| Placer                                                                               | 0.21               | 0.04 | 0.19            | 0.17 |  |  |  |  |  |  |  |  |
| Total                                                                                | 0.31               | 0.06 | 0.28            | 0.25 |  |  |  |  |  |  |  |  |

<sup>a</sup> There are no future bankable rice burning ERCs for El Dorado County AQMD. Rice ERCs for Yolo-Solano are included in Table B6.1 because they are banked under Rule 3.21.

| Table B6.3                                                  |                                                       |       |      |      |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------|-------|------|------|--|--|--|
| ERCs From Wood Stove/Fireplace Change-Out Incentive Program |                                                       |       |      |      |  |  |  |
|                                                             | ERC tons/day (winter average day)                     |       |      |      |  |  |  |
| Air District                                                | PM <sub>2.5</sub> SO <sub>X</sub> NO <sub>X</sub> VOC |       |      |      |  |  |  |
| Sacramento                                                  | 0.09                                                  | 0.001 | 0.01 | 0.10 |  |  |  |

October 24, 2013

### Appendix B7: PM<sub>2.5</sub> and PM<sub>2.5</sub> Precursors Forecasts by CMB Source Category

Detailed breakdown of directly emitted  $PM_{2.5}$  and  $PM_{2.5}$  precursors base-year emissions and forecasts by chemical mass balance (CMB) source category is presented in Table B7.1. Emissions inventory projections by source category are used to forecast the contributions of each source category to ambient wintertime  $PM_{2.5}$  concentrations in 2011, 2017, and 2024. Emissions for stationary, areawide and off-road sources are from CARB CEPAM: NORCAL 2012  $PM_{2.5}$  SIP Baseline Emission Projections, Section a1 - Emission Projections with External Adjustments, downloaded on October 11, 2012. ERCs are included in the emissions inventory. Additional adjustments from Table B5.1 and Table B5.2 are included. On-road emissions include CARB external adjustments and are based on emissions generated by SACOG using EMFAC2011 and SACOG MTP/SCS2035 vehicle activity forecasts. On-road emissions also include a "safety margin" for transportation conformity budget (1.88 tpd of NO<sub>x</sub> and 0.09 tpd of direct PM<sub>2.5</sub> in 2017 and 2.10 tpd of NO<sub>x</sub> and 0.36 tpd of direct PM<sub>2.5</sub> in 2024).

## Table B7.1: Detailed Breakdown of Directly Emitted PM2.5 and PM2.5 Precursors Base-year Emissions and Forecasts by CMB Source Category

| CMB Source<br>Category | El Source<br>Assignments                                      | Emission Category                                           | Emissions<br>Federal PN | , Tons/Day S<br>I₂.₅ Nonattain | acramento<br>ment Area | Source                                              |
|------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------|------------------------|-----------------------------------------------------|
|                        |                                                               |                                                             | 2011                    | 2017                           | 2024                   |                                                     |
| Ammonium<br>Nitrate    | NO <sub>x</sub>                                               | Total SFNA                                                  | 99.47                   | 80.44                          | 61.85                  | PM <sub>2.5</sub> Plan,<br>Chapter 4, Table<br>4.2a |
| Ammonium<br>Sulfate    | SOx                                                           | Total SFNA                                                  | 1.71                    | 2.31                           | 2.37                   | PM <sub>2.5</sub> Plan,<br>Chapter 4, Table<br>4.2a |
| Other OC               | VOC                                                           | Total SFNA                                                  | 106.04                  | 96.55                          | 94.42                  | PM <sub>2.5</sub> Plan,<br>Chapter 4, Table<br>4.2b |
| Motor<br>Vehicle       | PM <sub>2.5</sub> for on-<br>and off-road<br>Mobile sources   | On-Road + Off-<br>Road PM <sub>2.5</sub>                    | 3.41                    | 2.81                           | 2.75                   | PM <sub>2.5</sub> Plan,<br>Chapter 4, Table<br>4.1  |
| Soil                   | PM <sub>2.5</sub> dust,<br>crustal, soil                      | Total Soil                                                  | 5.26                    | 5.74                           | 6.00                   | Sum of EICs<br>Below                                |
|                        | 430-430-7078-0000-<br>CEMENT CONCRETE<br>FABRICATION; SAND/   | MINERAL PROCESSES;<br>MANUFACTURING AND<br>AGGREGATE        | 0.0001                  | 0.0001                         | 0.0001                 | Note 1                                              |
|                        | 430- 995- 7022- 0000-<br>OTHER; CLAY                          | MINERAL PROCESSES;                                          | 0.0814                  | 0.1059                         | 0.1214                 | Note 1                                              |
|                        | 430- 426- 7102- 0000-<br>CRUSHED STONE EX<br>PROCESSING (AGGR | MINERAL PROCESSES;<br>CAVATION AND<br>EGATE PROD.); GRANITE | 0                       | 0                              | 0                      | Note 1                                              |
|                        | 430- 434- 7050- 0000-<br>LIME MANUFACTURIN                    | MINERAL PROCESSES;<br>NG; LIMESTONE                         | 0.001                   | 0.0013                         | 0.0015                 | Note 1                                              |
|                        | 430- 436- 7006- 0000-<br>STORAGE PILES; ASF                   | MINERAL PROCESSES;<br>PHALTIC CONCRETE                      | 0.0007                  | 0.0009                         | 0.001                  | Note 1                                              |
|                        | 430- 995- 7016- 0000-<br>OTHER; CEMENT                        | MINERAL PROCESSES;                                          | 0.0106                  | 0.0141                         | 0.0162                 | Note 1                                              |
|                        | 430- 995- 7032- 0000-<br>OTHER; FLYASH                        | MINERAL PROCESSES;                                          | 0.0041                  | 0.0054                         | 0.0063                 | Note 1                                              |
|                        | 430- 995- 7042- 0000-<br>OTHER; GYPSUM                        | MINERAL PROCESSES;                                          | 0.0023                  | 0.003                          | 0.0035                 | Note 1                                              |
|                        | 430- 995- 7078- 0000-<br>OTHER; SAND/AGGRI                    | MINERAL PROCESSES;<br>EGATE                                 | 0.001                   | 0.0012                         | 0.0014                 | Note 1                                              |
|                        | 430- 995- 7020- 0000-<br>OTHER; CERAMICS                      | MINERAL PROCESSES;                                          | 0.0108                  | 0.014                          | 0.0161                 | Note 1                                              |

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                                      | Emission Category                                   | Emissions<br>Federal PM | , Tons/Day S<br>I₂.₅ Nonattain | acramento<br>ment Area | Source |
|------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------|------------------------|--------|
|                        |                                                                                                               |                                                     | 2011                    | 2017                           | 2024                   |        |
|                        | 430- 995- 7064- 0000-<br>OTHER; NON                                                                           | MINERAL PROCESSES;                                  | 0.0003                  | 0.0004                         | 0.0005                 | Note 1 |
|                        | 430- 995- 7048- 0000-<br>OTHER; LIME                                                                          | MINERAL PROCESSES;                                  | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 430- 428- 7078- 0000-<br>SURFACE BLASTING;                                                                    | MINERAL PROCESSES;<br>SAND/AGGREGATE                | 0.0039                  | 0.0052                         | 0.0058                 | Note 1 |
|                        | 430- 429- 7016- 0000-<br>CEMENT (PORTLAND<br>MANUFACTURING; CE                                                | MINERAL PROCESSES;<br>AND OTHERS)<br>EMENT          | 0.0027                  | 0.0035                         | 0.0039                 | Note 1 |
|                        | 430- 436- 7078- 0000-<br>STORAGE PILES; SAN                                                                   | MINERAL PROCESSES;<br>ID/AGGREGATE                  | 0.0006                  | 0.0007                         | 0.0008                 | Note 1 |
|                        | 430- 995- 7000- 0000-<br>OTHER; MINERAL ANI<br>(UNSPECIFIED)                                                  | MINERAL PROCESSES;<br>D METAL PRODUCTS              | 0.0445                  | 0.058                          | 0.0661                 | Note 1 |
|                        | 430- 428- 7088- 0000- MINERAL PROCESSES;<br>SURFACE BLASTING; STEEL GRIT ABRASIVE                             |                                                     | 0                       | 0                              | 0                      | Note 1 |
|                        | 430- 430- 7012- 0000- MINERAL PROCESSES;<br>CEMENT CONCRETE MANUFACTURING AND<br>FABRICATION; BRICKS          |                                                     | 0.0008                  | 0.001                          | 0.0012                 | Note 1 |
|                        | 430- 430- 7016- 0000- MINERAL PROCESSES;<br>CEMENT CONCRETE MANUFACTURING AND<br>FABRICATION; CEMENT          |                                                     | 0                       | 0                              | 0                      | Note 1 |
|                        | 430- 430- 7018- 0000- MINERAL PROCESSES;<br>CEMENT CONCRETE MANUFACTURING AND<br>FABRICATION; CEMENT CONCRETE |                                                     | 0.2059                  | 0.2786                         | 0.3331                 | Note 1 |
|                        | 430- 328- 1100- 0000-<br>FIXED ROOF TANKS ;                                                                   | MINERAL PROCESSES;<br>GASOLINE (UNSPECIFIED)        | 0                       | 0                              | 0                      | Note 1 |
|                        | 430- 995- 7012- 0000-<br>OTHER; BRICKS                                                                        | MINERAL PROCESSES;                                  | 0.0051                  | 0.0068                         | 0.0078                 | Note 1 |
|                        | 430- 422- 7078- 0000-<br>SAND AND GRAVEL E<br>PROCESSING; SAND/                                               | MINERAL PROCESSES;<br>XCAVATION AND<br>AGGREGATE    | 0.065                   | 0.0983                         | 0.1229                 | Note 1 |
|                        | 430- 424- 7006- 0000-<br>ASPHALTIC CONCRE<br>ASPHALTIC CONCRE                                                 | MINERAL PROCESSES;<br>TE PRODUCTION;<br>TE          | 0.0647                  | 0.0854                         | 0.0975                 | Note 1 |
|                        | 430- 426- 7078- 0000-<br>CRUSHED STONE EX<br>PROCESSING (AGGR<br>SAND/AGGREGATE                               | MINERAL PROCESSES;<br>CAVATION AND<br>EGATE PROD.); | 0.0054                  | 0.0072                         | 0.0083                 | Note 1 |
|                        | 430- 428- 7000- 0000-<br>SURFACE BLASTING;<br>PRODUCTS (UNSPEC                                                | MINERAL PROCESSES;<br>MINERAL AND METAL<br>IFIED)   | 0.0094                  | 0.0122                         | 0.014                  | Note 1 |
|                        | 430- 995- 7018- 0000-<br>OTHER; CEMENT COM                                                                    | MINERAL PROCESSES;<br>NCRETE                        | 0                       | 0                              | 0                      | Note 1 |
|                        | 430- 995- 7075- 0000-<br>OTHER; REFRACTOR                                                                     | MINERAL PROCESSES;<br>Y                             | 0.0001                  | 0.0002                         | 0.0002                 | Note 1 |
|                        | 620- 614- 5400- 0000-<br>TILLING DUST; DUST                                                                   | FARMING OPERATIONS;                                 | 1.0362                  | 1.0658                         | 1.0493                 | Note 1 |
|                        | 620- 615- 5400- 0000-<br>HARVEST OPERATIO                                                                     | FARMING OPERATIONS;<br>NS ; DUST                    | 0.0156                  | 0.016                          | 0.0158                 | Note 1 |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                     | Emission Category                              | Emissions, Tons/Day Sacramento<br>Federal PM <sub>2.5</sub> Nonattainment Area |                   |                   | Source |
|------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|-------------------|-------------------|--------|
|                        |                                                                                              |                                                | 2011                                                                           | 2017              | 2024              |        |
|                        | 620- 618- 0262- 0101-<br>LIVESTOCK HUSBANI<br>WASTE                                          | FARMING OPERATIONS;<br>DRY; AGRICULTURAL       | 0.0097                                                                         | 0.01              | 0.01              | Note 1 |
|                        | 630- 622- 5400- 0000-<br>DEMOLITION; BUILDIN<br>DUST                                         | CONSTRUCTION AND IG CONSTRUCTION DUST ;        | 0.457                                                                          | 0.5089            | 0.5277            | Note 1 |
|                        | 630- 624- 5400- 0000-<br>DEMOLITION; BUILDIN<br>DUST                                         | CONSTRUCTION AND<br>IG CONSTRUCTION DUST;      | 0.2171                                                                         | 0.2418            | 0.2507            | Note 1 |
|                        | 630- 626- 5400- 0000-<br>DEMOLITION; BUILDIN<br>DUST                                         | CONSTRUCTION AND<br>IG CONSTRUCTION DUST;      | 0.086                                                                          | 0.0913            | 0.0919            | Note 1 |
|                        | 630- 628- 5400- 0000-<br>DEMOLITION; BUILDIN<br>DUST                                         | 0.0758                                         | 0.0797                                                                         | 0.0804            | Note 1            |        |
|                        | 630- 634- 5400- 0000-<br>DEMOLITION; ROAD (<br>DUST                                          | 1.1549                                         | 1.2291                                                                         | 1.2358            | Note 1            |        |
|                        | 640- 635- 5400- 0000-<br>PAVED ROAD TRAVE                                                    | 1.1884                                         | 1.2769                                                                         | 1.3927            | Note 2            |        |
|                        | 640- 637- 5400- 0000-<br>PAVED ROAD TRAVE                                                    | Included<br>above                              | Included<br>above                                                              | Included<br>above | Note 2            |        |
|                        | 640- 639- 5400- 0000-<br>PAVED ROAD TRAVE                                                    | PAVED ROAD DUST;<br>_ DUST ; DUST              | Included<br>above                                                              | Included<br>above | Included<br>above | Note 2 |
|                        | 640- 641- 5400- 0000-<br>PAVED ROAD TRAVE                                                    | PAVED ROAD DUST;<br>_ DUST ; DUST              | Included<br>above                                                              | Included<br>above | Included<br>above | Note 2 |
|                        | 645- 638- 5400- 0000-<br>UNPAVED ROAD TRA                                                    | UNPAVED ROAD DUST;<br>VEL DUST; DUST           | 0.0652                                                                         | 0.0673            | 0.0673            | Note 1 |
|                        | 645- 640- 5400- 0000-<br>UNPAVED ROAD TRA                                                    | UNPAVED ROAD DUST;<br>VEL DUST; DUST           | 0.173                                                                          | 0.1887            | 0.1964            | Note 1 |
|                        | 645- 644- 5400- 0000-<br>UNPAVED ROAD TRA                                                    | UNPAVED ROAD DUST;<br>VEL DUST; DUST           | 0.0027                                                                         | 0.0028            | 0.003             | Note 1 |
|                        | 645- 646- 5400- 0000-<br>UNPAVED ROAD TRA                                                    | UNPAVED ROAD DUST;<br>VEL DUST; DUST           | 0.113                                                                          | 0.1156            | 0.1134            | Note 1 |
|                        | 650- 650- 5400- 0000- FUGITIVE WINDBLOWN<br>DUST; DUST FROM AGRICULTURAL LANDS<br>(NON: DUST |                                                | 0.1301                                                                         | 0.13              | 0.1224            | Note 1 |
|                        | 650- 651- 5400- 0000-<br>DUST; DUST FROM P                                                   | FUGITIVE WINDBLOWN<br>ASTURE LANDS; DUST       | 0.002                                                                          | 0.002             | 0.0018            | Note 1 |
|                        | 650- 652- 5400- 0000-<br>DUST; DUST FROM U<br>ASSOCIATED AREAS;                              | FUGITIVE WINDBLOWN<br>NPAVED ROADS AND<br>DUST | 0.012                                                                          | 0.0123            | 0.0123            | Note 1 |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

| CMB Source<br>Category | El Source<br>Assignments                                                                               | Emission Category                            | Emissions, Tons/Day Sacramento<br>Federal PM2.5 Nonattainment Area |         |         | Source               |
|------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|---------|---------|----------------------|
|                        |                                                                                                        |                                              | 2011                                                               | 2017    | 2024    |                      |
| Wood<br>Burning        | PM <sub>2.5</sub><br>residential<br>and open<br>burning                                                | Total Wood<br>Burning                        | 14.10                                                              | 14.41   | 14.20   | Sum of EICs<br>Below |
|                        | 610- 600- 0230- 0000- RESIDENTIAL FUEL<br>COMBUSTION; WOOD COMBUSTION ; WOOD                           |                                              | 10.1458                                                            | 10.3946 | 10.2917 | Note 1               |
|                        | 610- 602- 0230- 0000- RESIDENTIAL FUEL<br>COMBUSTION; WOOD COMBUSTION ; WOOD                           |                                              | 2.8408                                                             | 2.8213  | 2.6909  | Note 1               |
|                        | 010- 005- 0254- 0000- ELECTRIC UTILITIES;<br>BOILERS; WOOD/BARK WASTE                                  |                                              | 0.2272                                                             | 0.288   | 0.3266  | Note 1               |
|                        | 050- 005- 0254- 0000- MANUFACTURING AND<br>INDUSTRIAL; BOILERS; WOOD/BARK WASTE                        |                                              | 0.1432                                                             | 0.1433  | 0.1433  | Note 1               |
|                        | 670- 660- 0262- 0000- MANAGED BURNING AND<br>DISPOSAL; AGRICULTURAL BURNING ;<br>AGRICULTURAL WASTE    |                                              | 0.094                                                              | 0.0932  | 0.09    | Note 1               |
|                        | 670- 662- 0262- 0000- MANAGED BURNING AND<br>DISPOSAL; AGRICULTURAL BURNING ;<br>AGRICULTURAL WASTE    |                                              | 0.4315                                                             | 0.4415  | 0.4345  | Note 1               |
|                        | 670- 664- 0200- 0000- MANAGED BURNING AND<br>DISPOSAL; RANGE IMPROVEMENT; SOLID FUEL<br>(LINSPECIFIED) |                                              | 0.0025                                                             | 0.0023  | 0.0021  | Note 1               |
|                        | 670- 666- 0200- 0000- MANAGED BURNING AND<br>DISPOSAL; FOREST MANAGEMENT; SOLID FUEL<br>(UNSPECIFIED)  |                                              | 0.0562                                                             | 0.0562  | 0.0562  | Note 1               |
|                        | 670-668-0200-0000- MANAGED BURNING AND<br>DISPOSAL; WEED ABATEMENT; SOLID FUEL<br>(UNSPECIFIED)        |                                              | 0.023                                                              | 0.0212  | 0.0197  | Note 1               |
|                        | 670- 670- 0200- 0000-<br>DISPOSAL; NON; SOL                                                            | MANAGED BURNING AND<br>ID FUEL (UNSPECIFIED) | 0.1403                                                             | 0.1457  | 0.1458  | Note 1               |
|                        | 670- 995- 0240- 0000-<br>DISPOSAL; OTHER; S<br>(UNSPECIFIED)                                           | MANAGED BURNING AND<br>OLID WASTE            | 0.0002                                                             | 0.0002  | 0.0002  | Note 1               |

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                                                             | Emission Category                                             | Emissions, Tons/Day Sacramento<br>Federal PM <sub>2.5</sub> Nonattainment Area |        |        | Source               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--------|--------|----------------------|
|                        |                                                                                                                                      |                                                               | 2011                                                                           | 2017   | 2024   |                      |
| Unaccounted<br>Mass    | Other<br>Emissions                                                                                                                   | Total Unaccounted<br>Mass                                     | 3.03                                                                           | 3.38   | 3.60   | Sum of EICs<br>Below |
|                        | 010- 045- 1412- 0000-<br>TURBINE ENGINES; K                                                                                          | ELECTRIC UTILITIES; I.C.<br>ERONAPTHA JET FUEL                | 0                                                                              | 0      | 0      | Note 1               |
|                        | 010- 005- 0110- 0000-<br>BOILERS; NATURAL 0                                                                                          | ELECTRIC UTILITIES;<br>GAS                                    | 0                                                                              | 0      | 0      | Note 1               |
|                        | 010- 045- 0110- 0000-<br>TURBINE ENGINES; N                                                                                          | ELECTRIC UTILITIES; I.C.<br>ATURAL GAS                        | 0.1942                                                                         | 0.1894 | 0.1769 | Note 1               |
|                        | 010- 045- 1200- 0000-<br>TURBINE ENGINES; D<br>(UNSPECIFIED)                                                                         | ELECTRIC UTILITIES; I.C.<br>IESEL/DISTILLATE OIL              | 0.0003                                                                         | 0.0003 | 0.0003 | Note 1               |
|                        | 010- 040- 0142- 0000-<br>RECIPROCATING ENG                                                                                           | ELECTRIC UTILITIES; I.C.<br>GINES; LANDFILL GAS               | 0.0524                                                                         | 0.066  | 0.075  | Note 1               |
|                        | 010- 040- 1200- 0000- ELECTRIC UTILITIES; I.C.<br>RECIPROCATING ENGINES; DIESEL/DISTILLATE<br>OIL (UNSPECIFIED)                      |                                                               | 0                                                                              | 0      | 0      | Note 1               |
|                        | 020- 995- 0012- 0000- COGENERATION; OTHER;<br>FUEL (UNSPECIFIED)                                                                     |                                                               | 0                                                                              | 0      | 0      | Note 1               |
|                        | 030- 040- 0110- 0000- OIL AND GAS<br>PRODUCTION (COMBUSTION); I.C.<br>RECIPROCATING ENGINES; NATURAL GAS                             |                                                               | 0.0052                                                                         | 0.0047 | 0.004  | Note 1               |
|                        | 030- 045- 0110- 0000- OIL AND GAS<br>PRODUCTION (COMBUSTION); I.C. TURBINE<br>ENGINES: NATURAL GAS                                   |                                                               | 0                                                                              | 0      | 0      | Note 1               |
|                        | 030- 040- 0100- 0000-<br>PRODUCTION (COMB<br>RECIPROCATING ENO<br>(UNSPECIFIED)                                                      | OIL AND GAS<br>USTION); I.C.<br>GINES; GASEOUS FUEL           | 0                                                                              | 0      | 0      | Note 1               |
|                        | 050- 005- 0110- 0000-<br>INDUSTRIAL; BOILER:                                                                                         | MANUFACTURING AND<br>S; NATURAL GAS                           | 0.0072                                                                         | 0.0072 | 0.0069 | Note 1               |
|                        | 050- 012- 0110- 0000-<br>INDUSTRIAL; OVEN H<br>SURFACE COATINGS                                                                      | MANUFACTURING AND<br>EATERS (FORCE DRYING<br>); NATURAL GAS   | 0.0036                                                                         | 0.0036 | 0.0036 | Note 1               |
|                        | 050-012-0120-0000-MANUFACTURING AND<br>INDUSTRIAL; OVEN HEATERS (FORCE DRYING<br>SURFACE COATINGS); LIQUIFIED PETROLEUM<br>GAS (LPG) |                                                               | 0                                                                              | 0      | 0      | Note 1               |
|                        | 050- 040- 0142- 0000-<br>INDUSTRIAL; I.C. REC<br>LANDFILL GAS                                                                        | MANUFACTURING AND<br>IPROCATING ENGINES;                      | 0.0021                                                                         | 0.0022 | 0.0022 | Note 1               |
|                        | 050- 040- 1200- 0000-<br>INDUSTRIAL; I.C. REC<br>DIESEL/DISTILLATE C                                                                 | MANUFACTURING AND<br>IPROCATING ENGINES;<br>DIL (UNSPECIFIED) | 0.003                                                                          | 0.0031 | 0.0031 | Note 1               |
|                        | 050- 070- 0110- 0000-<br>INDUSTRIAL; IN; NATU                                                                                        | MANUFACTURING AND<br>JRAL GAS                                 | 0.0023                                                                         | 0.0024 | 0.0022 | Note 1               |
|                        | 050- 005- 0243- 0000-<br>INDUSTRIAL; BOILER:<br>(UNSPECIFIED)                                                                        | MANUFACTURING AND<br>S; REFUSE DERIVED FUEL                   | 0.0001                                                                         | 0.0001 | 0.0001 | Note 1               |
|                        | 050- 040- 1412- 0000-<br>INDUSTRIAL; I.C. REC<br>KERONAPTHA JET FL                                                                   | MANUFACTURING AND<br>HPROCATING ENGINES;<br>JEL               | 0                                                                              | 0      | 0      | Note 1               |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                                     | Emission Category                                      | Emissions<br>Federal PM | , Tons/Day S<br>I₂.₅ Nonattain | acramento<br>ment Area | Source |
|------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|--------------------------------|------------------------|--------|
|                        |                                                                                                              |                                                        | 2011                    | 2017                           | 2024                   |        |
|                        | 050- 995- 0110- 0000-<br>INDUSTRIAL; OTHER;                                                                  | MANUFACTURING AND<br>NATURAL GAS                       | 0.2052                  | 0.2111                         | 0.1981                 | Note 1 |
|                        | 050- 995- 0120- 0000-<br>INDUSTRIAL; OTHER;<br>GAS (LPG)                                                     | MANUFACTURING AND<br>LIQUIFIED PETROLEUM               | 0.0006                  | 0.0004                         | 0.0004                 | Note 1 |
|                        | 050- 020- 0110- 0000-<br>INDUSTRIAL; SPACE                                                                   | MANUFACTURING AND<br>HEATING; NATURAL GAS              | 0.0004                  | 0.0004                         | 0.0004                 | Note 1 |
|                        | 050- 010- 0120- 0000-<br>INDUSTRIAL; PROCES<br>PETROLEUM GAS (LF                                             | MANUFACTURING AND<br>SS HEATERS; LIQUIFIED<br>IG)      | 0.0028                  | 0.003                          | 0.003                  | Note 1 |
|                        | 050-010-0110-0000-MANUFACTURING AND<br>INDUSTRIAL; PROCESS HEATERS; NATURAL<br>GAS                           |                                                        | 0.0047                  | 0.0046                         | 0.0043                 | Note 1 |
|                        | 050- 040- 0124- 0000-<br>INDUSTRIAL; I.C. REC<br>PROPANE                                                     | MANUFACTURING AND<br>IPROCATING ENGINES;               | 0                       | 0                              | 0                      | Note 1 |
|                        | 050- 040- 1100- 0000- MANUFACTURING AND<br>INDUSTRIAL; I.C. RECIPROCATING ENGINES;<br>GASOLINE (UNSPECIFIED) |                                                        | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 050- 995- 1220- 0000- MANUFACTURING AND<br>INDUSTRIAL; OTHER; DISTILLATE OIL<br>(UNSPECIFIED)                |                                                        | 0.0005                  | 0.0005                         | 0.0005                 | Note 1 |
|                        | 050- 005- 0124- 0000- MANUFACTURING AND<br>INDUSTRIAL; BOILERS; PROPANE                                      |                                                        | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 050- 040- 0110- 0000- MANUFACTURING AND<br>INDUSTRIAL; I.C. RECIPROCATING ENGINES;<br>NATURAL GAS            |                                                        | 0.0023                  | 0.0024                         | 0.0022                 | Note 1 |
|                        | 050- 005- 1220- 0000-<br>INDUSTRIAL; BOILER<br>(UNSPECIFIED)                                                 | MANUFACTURING AND<br>S; DISTILLATE OIL                 | 0                       | 0                              | 0                      | Note 1 |
|                        | 050- 995- 0200- 0000-<br>INDUSTRIAL; OTHER;<br>(UNSPECIFIED)                                                 | MANUFACTURING AND<br>SOLID FUEL                        | 0.0053                  | 0.0055                         | 0.0055                 | Note 1 |
|                        | 050- 995- 1000- 0000-<br>INDUSTRIAL; OTHER;<br>(UNSPECIFIED)                                                 | MANUFACTURING AND<br>LIQUID FUEL                       | 0                       | 0                              | 0                      | Note 1 |
|                        | 052-042-1200-0010-<br>AGRICULTURAL PRO<br>I.C. ENGINES; DIESEL<br>(UNSPECIFIED)                              | FOOD AND<br>CESSING; AG. IRRIGATION<br>/DISTILLATE OIL | 0.0186                  | 0.0047                         | 0.0043                 | Note 1 |
|                        | 052-042-1200-0011-<br>AGRICULTURAL PRO<br>I.C. ENGINES; DIESEL<br>(UNSPECIFIED)                              | FOOD AND<br>CESSING; AG. IRRIGATION<br>/DISTILLATE OIL | 0.0158                  | 0.0126                         | 0.007                  | Note 1 |
|                        | 052- 010- 0120- 0000-<br>AGRICULTURAL PRO<br>HEATERS; LIQUIFIED                                              | FOOD AND<br>CESSING; PROCESS<br>PETROLEUM GAS (LPG)    | 0.0007                  | 0.001                          | 0.001                  | Note 1 |
|                        | 052- 010- 1224- 0000-<br>AGRICULTURAL PRO<br>HEATERS; DISTILLAT                                              | FOOD AND<br>CESSING; PROCESS<br>E OIL #2 (FUEL OIL #2) | 0                       | 0                              | 0                      | Note 1 |
|                        | 052- 070- 0110- 0000-<br>AGRICULTURAL PRO<br>GAS                                                             | FOOD AND<br>CESSING; IN; NATURAL                       | 0.0007                  | 0.0007                         | 0.0006                 | Note 1 |
|                        | 052- 042- 0110- 0000-<br>AGRICULTURAL PRO<br>I.C. ENGINES; NATUR                                             | FOOD AND<br>CESSING; AG. IRRIGATION<br>AL GAS          | 0.0005                  | 0.0005                         | 0.0004                 | Note 1 |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

| CMB Source<br>Category | El Source<br>Assignments                                                                                      | Emission Category                                         | Emissions, Tons/Day Sacramento<br>Federal PM <sub>2.5</sub> Nonattainment Area |        |        | Source |
|------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|--------|--------|--------|
|                        |                                                                                                               |                                                           | 2011                                                                           | 2017   | 2024   |        |
|                        | 052-040-1200-0000-<br>AGRICULTURAL PRO<br>RECIPROCATING ENO<br>OIL (UNSPECIFIED)                              | FOOD AND<br>CESSING; I.C.<br>GINES; DIESEL/DISTILLATE     | 0                                                                              | 0      | 0      | Note 1 |
|                        | 052- 010- 0110- 0000-<br>AGRICULTURAL PRO<br>HEATERS; NATURAL                                                 | FOOD AND<br>CESSING; PROCESS<br>GAS                       | 0.0145                                                                         | 0.0153 | 0.0142 | Note 1 |
|                        | 052-005-0110-0000-<br>AGRICULTURAL PRO<br>NATURAL GAS                                                         | FOOD AND<br>CESSING; BOILERS;                             | 0.0059                                                                         | 0.0061 | 0.0056 | Note 1 |
|                        | 060- 005- 0110- 0000-<br>COMMERCIAL; BOILE                                                                    | SERVICE AND<br>RS; NATURAL GAS                            | 0.0182                                                                         | 0.0198 | 0.0201 | Note 1 |
|                        | 060- 005- 0144- 0000-<br>COMMERCIAL; BOILE                                                                    | SERVICE AND<br>RS; SEWAGE GAS                             | 0.0004                                                                         | 0.0004 | 0.0004 | Note 1 |
|                        | 060- 005- 1220- 0000- SERVICE AND<br>COMMERCIAL; BOILERS; DISTILLATE OIL<br>(UNSPECIFIED)                     |                                                           | 0                                                                              | 0      | 0      | Note 1 |
|                        | 060- 045- 1200- 0000- SERVICE AND<br>COMMERCIAL; I.C. TURBINE ENGINES;<br>DIESEL/DISTILLATE OIL (UNSPECIFIED) |                                                           | 0                                                                              | 0      | 0      | Note 1 |
|                        | 060- 005- 0124- 0000- SERVICE AND<br>COMMERCIAL; BOILERS; PROPANE                                             |                                                           | 0.0001                                                                         | 0.0001 | 0.0001 | Note 1 |
|                        | 060-995-1220-0000-SERVICE AND<br>COMMERCIAL; OTHER; DISTILLATE OIL<br>(UNSPECIFIED)                           |                                                           | 0                                                                              | 0      | 0      | Note 1 |
|                        | 060- 995- 0110- 0005-<br>COMMERCIAL; OTHEI                                                                    | SERVICE AND<br>R; NATURAL GAS                             | 0.0059                                                                         | 0.0061 | 0.0061 | Note 1 |
|                        | 060- 005- 0142- 0000-<br>COMMERCIAL; BOILE                                                                    | SERVICE AND<br>RS; LANDFILL GAS                           | 0.0019                                                                         | 0.002  | 0.002  | Note 1 |
|                        | 060- 010- 0110- 0000-<br>COMMERCIAL; PROC<br>GAS                                                              | SERVICE AND<br>ESS HEATERS; NATURAL                       | 0.0018                                                                         | 0.0019 | 0.002  | Note 1 |
|                        | 060-012-0110-0000-<br>COMMERCIAL; OVEN<br>SURFACE COATINGS                                                    | SERVICE AND<br>HEATERS (FORCE DRYING<br>); NATURAL GAS    | 0.0003                                                                         | 0.0003 | 0.0003 | Note 1 |
|                        | 060- 040- 0110- 0000-<br>COMMERCIAL; I.C. RE<br>NATURAL GAS                                                   | SERVICE AND<br>CIPROCATING ENGINES;                       | 0                                                                              | 0      | 0      | Note 1 |
|                        | 060- 040- 1200- 0000-<br>COMMERCIAL; I.C. RE<br>DIESEL/DISTILLATE C                                           | SERVICE AND<br>ECIPROCATING ENGINES;<br>DIL (UNSPECIFIED) | 0.0016                                                                         | 0.0016 | 0.001  | Note 1 |
|                        | 060- 040- 1412- 0000-<br>COMMERCIAL; I.C. RE<br>KERONAPTHA JET FL                                             | SERVICE AND<br>CIPROCATING ENGINES;<br>JEL                | 0.0001                                                                         | 0.0001 | 0.0001 | Note 1 |
|                        | 060- 995- 0110- 0000-<br>COMMERCIAL; OTHE                                                                     | SERVICE AND<br>R; NATURAL GAS                             | 0.1752                                                                         | 0.1891 | 0.1925 | Note 1 |
|                        | 060- 995- 0120- 0000- SERVICE AND<br>COMMERCIAL; OTHER; LIQUIFIED PETROLEUM<br>GAS (LPG)                      |                                                           | 0.0002                                                                         | 0.0002 | 0.0002 | Note 1 |
|                        | 060- 030- 0110- 0000-<br>COMMERCIAL; WATE                                                                     | SERVICE AND<br>R HEATING; NATURAL GAS                     | 0.0126                                                                         | 0.0135 | 0.0137 | Note 1 |
|                        | 060- 045- 1412- 0000-<br>COMMERCIAL; I.C. TL<br>KERONAPTHA JET FL                                             | SERVICE AND<br>IRBINE ENGINES;<br>JEL                     | 0                                                                              | 0      | 0      | Note 1 |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                          | Emission Category                                         | Emissions, Tons/Day Sacramento<br>Federal PM <sub>2.5</sub> Nonattainment Area |        |        | Source |
|------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|--------|--------|--------|
|                        |                                                                                                   |                                                           | 2011                                                                           | 2017   | 2024   |        |
|                        | 060- 020- 0110- 0000-<br>COMMERCIAL; SPACI                                                        | SERVICE AND<br>E HEATING; NATURAL GAS                     | 0.0459                                                                         | 0.0492 | 0.0499 | Note 1 |
|                        | 060- 010- 0130- 0000-<br>COMMERCIAL; PROC<br>GAS                                                  | SERVICE AND<br>ESS HEATERS; PROCESS                       | 0.0001                                                                         | 0.0001 | 0.0001 | Note 1 |
|                        | 099-040-1200-0000-<br>COMBUSTION); I.C. R<br>DIESEL/DISTILLATE C                                  | OTHER (FUEL<br>ECIPROCATING ENGINES;<br>VIL (UNSPECIFIED) | 0.0185                                                                         | 0.0169 | 0.0139 | Note 1 |
|                        | 099- 995- 0000- 0000-<br>COMBUSTION); OTHE<br>SPECIFIED                                           | OTHER (FUEL<br>R; MATERIAL NOT                            | 0.0008                                                                         | 0.0008 | 0.0008 | Note 1 |
|                        | 110- 132- 0146- 0000-<br>FLARES; DIGESTER 0                                                       | SEWAGE TREATMENT;<br>GAS                                  | 0.0005                                                                         | 0.0006 | 0.0006 | Note 1 |
|                        | 110- 132- 0130- 0000-<br>FLARES; PROCESS G                                                        | SEWAGE TREATMENT;<br>AS                                   | 0.0012                                                                         | 0.0013 | 0.0013 | Note 1 |
|                        | 110- 110- 0300- 0000- SEWAGE TREATMENT;<br>SEWAGE TREATMENT PLANTS; LIQUID WASTE<br>(UNSPECIFIED) |                                                           | 0.0004                                                                         | 0.0004 | 0.0004 | Note 1 |
|                        | 120- 132- 0136- 0000- LANDFILLS; FLARES;<br>WASTE GAS                                             |                                                           | 0.0171                                                                         | 0.0179 | 0.0181 | Note 1 |
|                        | 120- 122- 0242- 0000- LANDFILLS; CLASS II AND<br>III LANDFILLS; MUNICIPAL SOLID WASTE (MSW)       |                                                           | 0                                                                              | 0      | 0      | Note 1 |
|                        | 130- 130- 0240- 0000- INCINERATORS;<br>INCINERATION; SOLID WASTE (UNSPECIFIED)                    |                                                           | 0                                                                              | 0      | 0      | Note 1 |
|                        | 130- 130- 0110- 0000- INCINERATORS;<br>INCINERATION; NATURAL GAS                                  |                                                           | 0.0004                                                                         | 0.0005 | 0.0005 | Note 1 |
|                        | 130- 130- 0130- 0000-<br>INCINERATION; PROC                                                       | INCINERATORS;<br>CESS GAS                                 | 0                                                                              | 0      | 0      | Note 1 |
|                        | 130- 132- 0136- 0000-<br>WASTE GAS                                                                | INCINERATORS; FLARES;                                     | 0.0003                                                                         | 0.0003 | 0.0003 | Note 1 |
|                        | 140- 140- 0010- 0000-<br>AERATION/LANDFARI<br>COMPOUNDS (UNSPE                                    | SOIL REMEDIATION;<br>MING; HYDROCARBON<br>ECIFIED)        | 0                                                                              | 0      | 0      | Note 1 |
|                        | 140- 995- 0240- 0000-<br>OTHER; SOLID WAST                                                        | SOIL REMEDIATION;<br>E (UNSPECIFIED)                      | 0.0002                                                                         | 0.0003 | 0.0003 | Note 1 |
|                        | 140- 995- 0010- 0000-<br>OTHER; HYDROCARE<br>(UNSPECIFIED)                                        | SOIL REMEDIATION;<br>ON COMPOUNDS                         | 0                                                                              | 0      | 0      | Note 1 |
|                        | 140- 995- 0300- 0000-<br>OTHER; LIQUID WAST                                                       | SOIL REMEDIATION;<br>E (UNSPECIFIED)                      | 0                                                                              | 0      | 0      | Note 1 |
|                        | 140- 995- 0110- 0000-<br>OTHER; NATURAL GA                                                        | SOIL REMEDIATION;<br>S                                    | 0.0002                                                                         | 0.0002 | 0.0002 | Note 1 |
|                        | 140- 995- 0120- 0000-<br>OTHER; LIQUIFIED PE                                                      | SOIL REMEDIATION;<br>TROLEUM GAS (LPG)                    | 0                                                                              | 0      | 0      | Note 1 |
|                        | 199- 995- 0000- 0000-<br>DISPOSAL); OTHER; M                                                      | OTHER (WASTE<br>/ATERIAL NOT SPECIFIED                    | 0                                                                              | 0      | 0      | Note 1 |
|                        | 199- 995- 0300- 0000-<br>DISPOSAL); OTHER; L<br>(UNSPECIFIED)                                     | OTHER (WASTE<br>IQUID WASTE                               | 0                                                                              | 0      | 0      | Note 1 |

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                              | Emission Category                                                  | Emissions<br>Federal PN | , Tons/Day S<br>I <sub>2.5</sub> Nonattain | acramento<br>Iment Area | Source |
|------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------------------|-------------------------|--------|
| 0,                     |                                                                                       |                                                                    | 2011                    | 2017                                       | 2024                    |        |
|                        | 199- 995- 0260- 0000-<br>DISPOSAL); OTHER; E<br>(UNSPECIFIED)                         | OTHER (WASTE<br>BIOLOGICAL WASTE                                   | 0                       | 0                                          | 0                       | Note 1 |
|                        | 199- 170- 0260- 0000-<br>DISPOSAL); COMPOS<br>(UNSPECIFIED)                           | other (Waste<br>Ting; Biological Waste                             | 0                       | 0                                          | 0                       | Note 1 |
|                        | 199- 190- 0010- 0000-<br>DISPOSAL); VOLATILE<br>DISPOSAL (EVAPORA<br>COMPOUNDS (UNSPE | OTHER (WASTE<br>E ORGANIC WASTE<br>ITION); HYDROCARBON<br>ECIFIED) | 0                       | 0                                          | 0                       | Note 1 |
|                        | 199- 170- 0240- 0000-<br>DISPOSAL); COMPOS<br>(UNSPECIFIED)                           | OTHER (WASTE<br>TING; SOLID WASTE                                  | 0                       | 0                                          | 0                       | Note 1 |
|                        | 199- 130- 0136- 0000-<br>DISPOSAL); INCINER/                                          | OTHER (WASTE<br>ATION; WASTE GAS                                   | 0                       | 0                                          | 0                       | Note 1 |
|                        | 410- 995- 4999- 0000-<br>CHEMICALS (UNSPEC                                            | CHEMICAL; OTHER;<br>CIFIED)                                        | 0                       | 0                                          | 0                       | Note 1 |
|                        | 410- 400- 2036- 0000- CHEMICAL; CHEMICAL<br>MANUFACTURING; NITRIC ACID                |                                                                    | 0                       | 0                                          | 0                       | Note 1 |
|                        | 410- 403- 5018- 0000-<br>AND FIBERGLASS PR<br>MANUFACTURING; FI                       | 0.0072                                                             | 0.0094                  | 0.0119                                     | Note 1                  |        |
|                        | 410- 404- 5032- 0000-<br>PLASTIC PRODUCTS<br>POLYETHER RESINS                         | 0.0363                                                             | 0.0469                  | 0.0592                                     | Note 1                  |        |
|                        | 410- 400- 2006- 0000- CHEMICAL; CHEMICAL<br>MANUFACTURING; AMMONIUM PHOSPHATES        |                                                                    | 0                       | 0                                          | 0                       | Note 1 |
|                        | 410- 400- 5800- 0000-<br>MANUFACTURING; FE                                            | CHEMICAL; CHEMICAL<br>ERTILIZERS (UNSPECIFIED)                     | 0.0169                  | 0.0207                                     | 0.0261                  | Note 1 |
|                        | 410- 328- 3128- 0000-<br>TANKS ; ETHANOL (E                                           | CHEMICAL; FIXED ROOF<br>THYL ALCOHOL)                              | 0                       | 0                                          | 0                       | Note 1 |
|                        | 410- 400- 5520- 0000-<br>MANUFACTURING; PI                                            | CHEMICAL; CHEMICAL<br>HARMACEUTICALS                               | 0.0001                  | 0.0001                                     | 0.0002                  | Note 1 |
|                        | 410- 404- 5028- 0000-<br>PLASTIC PRODUCTS<br>POLYESTERS (UNSPI                        | CHEMICAL; PLASTICS AND<br>MANUFACTURING;<br>ECIFIED)               | 0.0044                  | 0.0057                                     | 0.0072                  | Note 1 |
|                        | 410- 995- 3160- 0000-<br>ALCOHOLS (UNSPEC                                             | CHEMICAL; OTHER; FATTY<br>IFIED)                                   | 0.0005                  | 0.0006                                     | 0.0008                  | Note 1 |
|                        | 410- 995- 3362- 0000-                                                                 | CHEMICAL; OTHER; UREA                                              | 0.0002                  | 0.0003                                     | 0.0003                  | Note 1 |
|                        | 410- 995- 5520- 0000-<br>PHARMACEUTICALS                                              | CHEMICAL; OTHER;                                                   | 0.0034                  | 0.0042                                     | 0.0053                  | Note 1 |
|                        | 410- 400- 2002- 0000-<br>MANUFACTURING; AI                                            | CHEMICAL; CHEMICAL<br>MMONIA                                       | 0.0011                  | 0.0015                                     | 0.0018                  | Note 1 |
|                        | 410- 404- 5060- 0000-<br>PLASTIC PRODUCTS<br>SYNTHETIC ORGANIC                        | CHEMICAL; PLASTICS AND<br>MANUFACTURING;<br>CFIBERS                | 0.0578                  | 0.073                                      | 0.092                   | Note 1 |
|                        | 410- 995- 5020- 0000-<br>MELAMINE RESINS                                              | CHEMICAL; OTHER;                                                   | 0                       | 0                                          | 0                       | Note 1 |

PM<sub>2.5</sub> Implementation/Maintenance Plan and Re-designation Request for Sacramento PM<sub>2.5</sub> Nonattainment Area

| CMB Source<br>Category | El Source<br>Assignments                                                                                    | Emission Category                                                  | Emissions<br>Federal PM | , Tons/Day S<br>I₂.₅ Nonattain | acramento<br>ment Area | Source |
|------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------|------------------------|--------|
|                        |                                                                                                             |                                                                    | 2011                    | 2017                           | 2024                   |        |
|                        | 410- 328- 3220- 0000-<br>TANKS ; METHANOL (                                                                 | CHEMICAL; FIXED ROOF<br>METHYL ALCOHOL)                            | 0                       | 0                              | 0                      | Note 1 |
|                        | 410- 404- 5066- 0000-<br>PLASTIC PRODUCTS<br>(UNSPECIFIED)                                                  | CHEMICAL; PLASTICS AND<br>MANUFACTURING; VINYL                     | 0.0003                  | 0.0003                         | 0.0004                 | Note 1 |
|                        | 410- 995- 3346- 0000-<br>TRICHLOROETHYLEN                                                                   | CHEMICAL; OTHER;<br>IE (TCE)                                       | 0                       | 0                              | 0                      | Note 1 |
|                        | 410- 404- 5000- 0000-<br>PLASTIC PRODUCTS<br>PLASTICS (UNSPECIF                                             | CHEMICAL; PLASTICS AND<br>MANUFACTURING;<br>'IED)                  | 0.059                   | 0.0736                         | 0.0921                 | Note 1 |
|                        | 410- 995- 8400- 0000-<br>(UNSPECIFIED)                                                                      | 410- 995- 8400- 0000- CHEMICAL; OTHER; INK<br>(UNSPECIFIED)        |                         | 0.0035                         | 0.0043                 | Note 1 |
|                        | 410- 400- 3362- 0000-<br>MANUFACTURING; UF                                                                  | 410- 400- 3362- 0000- CHEMICAL; CHEMICAL<br>MANUFACTURING; UREA    |                         | 0.0174                         | 0.022                  | Note 1 |
|                        | 410- 340- 5530- 0000- CHEMICAL; WASTEWATER<br>TREATMENT; SOAP/DETERGENTS                                    |                                                                    | 0                       | 0                              | 0                      | Note 1 |
|                        | 410- 400- 3000- 0000- CHEMICAL; CHEMICAL<br>MANUFACTURING; ORGANIC CHEMICALS<br>(UNSPECIFIED)               |                                                                    | 0                       | 0                              | 0                      | Note 1 |
|                        | 410- 402- 0248- 0000- CHEMICAL; RUBBER AND<br>RUBBER PRODUCTS MANUFACTURING;<br>RUBBER TIRES                |                                                                    | 0.0001                  | 0.0001                         | 0.0002                 | Note 1 |
|                        | 410- 404- 5050- 0000- CHEMICAL; PLASTICS AND<br>PLASTIC PRODUCTS MANUFACTURING;<br>POLYVINYL CHLORIDE (PVC) |                                                                    | 0.0059                  | 0.0075                         | 0.0095                 | Note 1 |
|                        | 420- 418- 6052- 0000-<br>AGRICULTURAL PROI<br>LOSSES; PEANUTS                                               | FOOD AND AGRICULTURE;<br>DUCTS PROCESSING                          | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 420- 6038- 0000-<br>AGRICULTURAL CRO<br>GRAIN (UNSPECIFIED                                             | FOOD AND AGRICULTURE;<br>P PROCESSING LOSSES;<br>))                | 0.0063                  | 0.0074                         | 0.0085                 | Note 1 |
|                        | 420- 420- 6060- 0000-<br>AGRICULTURAL CRO<br>RICE                                                           | FOOD AND AGRICULTURE;<br>P PROCESSING LOSSES;                      | 0.0085                  | 0.0103                         | 0.0116                 | Note 1 |
|                        | 420- 995- 6000- 0000-<br>OTHER; FOOD AND A<br>(UNSPECIFIED)                                                 | FOOD AND AGRICULTURE;<br>GRICULTURAL PRODUCTS                      | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 414- 6000- 0000-<br>BREWERIES; FOOD A<br>PRODUCTS (UNSPEC                                              | FOOD AND AGRICULTURE;<br>ND AGRICULTURAL<br>IFIED)                 | 0.0246                  | 0.0283                         | 0.0317                 | Note 1 |
|                        | 420- 408- 6090- 0000-<br>WINE FERMENTATION                                                                  | FOOD AND AGRICULTURE;<br>N; WINE                                   | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 418- 6020- 0000-<br>AGRICULTURAL PROI<br>LOSSES; COFFEE                                                | FOOD AND AGRICULTURE;<br>DUCTS PROCESSING                          | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 418- 6040- 0000-<br>AGRICULTURAL PRO<br>LOSSES; GRAIN FEEL                                             | FOOD AND AGRICULTURE;<br>DUCTS PROCESSING<br>)                     | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 410- 6090- 0000-<br>WINE AGING; WINE                                                                   | FOOD AND AGRICULTURE;                                              | 0                       | 0                              | 0                      | Note 1 |
|                        | 420- 418- 6000- 0000-<br>AGRICULTURAL PROI<br>LOSSES; FOOD AND /<br>(UNSPECIFIED)                           | FOOD AND AGRICULTURE;<br>DUCTS PROCESSING<br>AGRICULTURAL PRODUCTS | 0.0488                  | 0.0568                         | 0.0638                 | Note 1 |

```
October 24, 2013
```

| CMB Source<br>Category | El Source<br>Assignments                                                                                                               | El Source<br>Assignments                                                                                 |        | , Tons/Day Sa<br>l₂.₅ Nonattain | Source |        |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|---------------------------------|--------|--------|
|                        |                                                                                                                                        |                                                                                                          | 2011   | 2017                            | 2024   |        |
|                        | 420- 418- 6018- 0000-<br>AGRICULTURAL PROI<br>LOSSES; CEREAL                                                                           | FOOD AND AGRICULTURE;<br>DUCTS PROCESSING                                                                | 0.006  | 0.0071                          | 0.0081 | Note 1 |
|                        | 420- 412- 6012- 0000-<br>BAKERIES; BREAD/BA                                                                                            | FOOD AND AGRICULTURE;<br>KED GOODS                                                                       | 0      | 0                               | 0      | Note 1 |
|                        | 420- 420- 6040- 0000-<br>AGRICULTURAL CRO<br>GRAIN FEED                                                                                | FOOD AND AGRICULTURE;<br>P PROCESSING LOSSES;                                                            | 0.0003 | 0.0004                          | 0.0004 | Note 1 |
|                        | 420- 420- 6064- 0000- FOOD AND AGRICULTURE;<br>AGRICULTURAL CROP PROCESSING LOSSES;<br>SEEDS                                           |                                                                                                          | 0.0002 | 0.0002                          | 0.0003 | Note 1 |
|                        | 420- 420- 6074- 0000- FOOD AND AGRICULTURE;<br>AGRICULTURAL CROP PROCESSING LOSSES;<br>SUGAR BEETS                                     |                                                                                                          | 0.0008 | 0.001                           | 0.0011 | Note 1 |
|                        | 420- 418- 6080- 0000-<br>AGRICULTURAL PROI<br>LOSSES; VEGETABLE                                                                        | 420- 418- 6080- 0000- FOOD AND AGRICULTURE;<br>AGRICULTURAL PRODUCTS PROCESSING<br>LOSSES; VEGETABLE OIL |        | 0.0003                          | 0.0004 | Note 1 |
|                        | 420- 420- 6000- 0000- FOOD AND AGRICULTURE;<br>AGRICULTURAL CROP PROCESSING LOSSES;<br>FOOD AND AGRICULTURAL PRODUCTS<br>(UNSPECIFIED) |                                                                                                          | 0.3108 | 0.3692                          | 0.414  | Note 1 |
|                        | 420- 338- 0010- 0000- FOOD AND AGRICULTURE;<br>COOLING TOWERS; HYDROCARBON<br>COMPOUNDS (UNSPECIFIED)                                  |                                                                                                          | 0      | 0                               | 0      | Note 1 |
|                        | 420- 414- 6040- 0000- FOOD AND AGRICULTURE;<br>BREWERIES; GRAIN FEED                                                                   |                                                                                                          | 0      | 0                               | 0      | Note 1 |
|                        | 420- 418- 6003- 0000- FOOD AND AGRICULTURE;<br>AGRICULTURAL PRODUCTS PROCESSING<br>LOSSES: ALMONDS                                     |                                                                                                          | 0.0305 | 0.0357                          | 0.0398 | Note 1 |
|                        | 610- 606- 0110- 0000-<br>COMBUSTION; FUEL<br>GAS                                                                                       | RESIDENTIAL FUEL<br>COMBUSTION ; NATURAL                                                                 | 0.2314 | 0.2562                          | 0.2727 | Note 1 |
|                        | 610- 606- 1220- 0000-<br>COMBUSTION; FUEL<br>OIL (UNSPECIFIED)                                                                         | RESIDENTIAL FUEL<br>COMBUSTION ; DISTILLATE                                                              | 0.0188 | 0.0097                          | 0.0097 | Note 1 |
|                        | 610- 608- 0110- 0000-<br>COMBUSTION; FUEL 0<br>GAS                                                                                     | RESIDENTIAL FUEL<br>COMBUSTION ; NATURAL                                                                 | 0.1142 | 0.1263                          | 0.1343 | Note 1 |
|                        | 610- 610- 0110- 0000-<br>COMBUSTION; FUEL (<br>GAS                                                                                     | RESIDENTIAL FUEL<br>COMBUSTION ; NATURAL                                                                 | 0.0092 | 0.0102                          | 0.0108 | Note 1 |
|                        | 610- 995- 0110- 0000-<br>COMBUSTION; OTHE                                                                                              | RESIDENTIAL FUEL<br>R; NATURAL GAS                                                                       | 0.0269 | 0.0299                          | 0.0313 | Note 1 |
|                        | 610- 995- 0120- 0000-<br>COMBUSTION; OTHEI<br>GAS (LPG)                                                                                | RESIDENTIAL FUEL<br>R; LIQUIFIED PETROLEUM                                                               | 0.0131 | 0.0134                          | 0.0101 | Note 1 |
|                        | 660- 656- 0200- 0000-<br>FIRES; SOLID FUEL (L                                                                                          | FIRES; STRUCTURAL<br>INSPECIFIED)                                                                        | 0.0289 | 0.0333                          | 0.0382 | Note 1 |
|                        | 660- 658- 0200- 0000-<br>FIRES; SOLID FUEL (L                                                                                          | FIRES; AUTOMOBILE<br>INSPECIFIED)                                                                        | 0.0395 | 0.0442                          | 0.0481 | Note 1 |
|                        | 690- 680- 6000- 0000-<br>CHARBROILING; FOO<br>PRODUCTS (UNSPEC                                                                         | COOKING; COMMERCIAL<br>D AND AGRICULTURAL<br>IFIED)                                                      | 0.5345 | 0.5977                          | 0.6575 | Note 1 |
|                        | 690- 682- 6000- 0000-<br>FRYING; FOOD AND A<br>(UNSPECIFIED)                                                                           | COOKING; DEEP FAT<br>IGRICULTURAL PRODUCTS                                                               | 0.0004 | 0.0004                          | 0.0008 | Note 1 |

| CMB Source<br>Category | El Source<br>Assignments                                                        | Emission Category                                                                          | Emissions<br>Federal PM | , Tons/Day S<br>I₂.₅ Nonattain | acramento<br>ment Area | Source |
|------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|--------------------------------|------------------------|--------|
|                        |                                                                                 |                                                                                            | 2011                    | 2017                           | 2024                   |        |
|                        | 690- 684- 6000- 0000-<br>(UNSPECIFIED); FOOI<br>PRODUCTS (UNSPEC                | COOKING; COOKING<br>D AND AGRICULTURAL<br>IFIED)                                           | 0.0495                  | 0.0554                         | 0.0609                 | Note 1 |
|                        | 450- 456- 0230- 0000-<br>SAWMILL/WOODWOR                                        | Wood and Paper;<br>King operations; Wood                                                   | 0.042                   | 0.0484                         | 0.0493                 | Note 1 |
|                        | 450- 454- 5620- 0000-<br>PLYWOOD/PARTICLE<br>PLYWOOD/PARTICLE                   | WOOD AND PAPER;<br>BOARD MANUFACTURING;<br>BOARD                                           | 0.0328                  | 0.0381                         | 0.0388                 | Note 1 |
|                        | 450- 450- 5610- 0000-<br>AND PAPER MANUFA                                       | WOOD AND PAPER; PULP<br>CTURING; PAPER/PULP                                                | 0.0433                  | 0.0498                         | 0.0507                 | Note 1 |
|                        | 450- 995- 0230- 0000-<br>OTHER; WOOD                                            | WOOD AND PAPER;                                                                            | 0.292                   | 0.334                          | 0.3392                 | Note 1 |
|                        | 450- 995- 5610- 0000-<br>OTHER; PAPER/PULP                                      | WOOD AND PAPER;                                                                            | 0.0041                  | 0.0048                         | 0.0049                 | Note 1 |
|                        | 230-230-9100-0000-<br>PROCESS SOLVENTS<br>PRODUCTS COATING<br>SOLVENT BASED) CO | COATINGS AND RELATED<br>; METAL PARTS AND<br>S; OIL BASED (ORGANIC<br>ATINGS (UNSPECIFIED) | 0.0016                  | 0.0019                         | 0.0023                 | Note 1 |
|                        | 230-230-9200-0000-<br>PROCESS SOLVENTS<br>PRODUCTS COATING<br>COATINGS (UNSPECI | COATINGS AND RELATED<br>; METAL PARTS AND<br>S; WATER BASED<br>FIED)                       | 0.0014                  | 0.0017                         | 0.0019                 | Note 1 |
|                        | 230-232-9000-0000-<br>PROCESS SOLVENTS<br>FABRICATED PRODU-<br>(UNSPECIFIED)    | COATINGS AND RELATED<br>; WOOD FURNITURE AND<br>CTS COATINGS; COATINGS                     | 0.0026                  | 0.003                          | 0.0031                 | Note 1 |
|                        | 230- 240- 8302- 0000-<br>PROCESS SOLVENTS<br>SOLVENT USES; THIN                 | COATINGS AND RELATED<br>; THINNING AND CLEANUP<br>INING SOLVENTS                           | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 230-230-9000-0000-<br>PROCESS SOLVENTS<br>PRODUCTS COATING<br>(UNSPECIFIED)     | COATINGS AND RELATED<br>;; METAL PARTS AND<br>;S; COATINGS                                 | 0.0059                  | 0.0067                         | 0.0071                 | Note 1 |
|                        | 230- 218- 9000- 0000-<br>PROCESS SOLVENTS<br>COATINGS (UNSPECI                  | COATINGS AND RELATED<br>; AUTO REFINISHING;<br>FIED)                                       | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 230- 218- 9050- 0000-<br>PROCESS SOLVENTS<br>TOPCOATS (UNSPEC                   | COATINGS AND RELATED<br>; AUTO REFINISHING;<br>IFIED)                                      | 0.0026                  | 0.0029                         | 0.003                  | Note 1 |
|                        | 230- 995- 9000- 0000-<br>PROCESS SOLVENTS<br>(UNSPECIFIED)                      | COATINGS AND RELATED<br>; OTHER; COATINGS                                                  | 0.0085                  | 0.0104                         | 0.011                  | Note 1 |
|                        | 230- 995- 9100- 0000-<br>PROCESS SOLVENTS<br>(ORGANIC SOLVENT)<br>(UNSPECIFIED) | COATINGS AND RELATED<br>; OTHER; OIL BASED<br>BASED) COATINGS                              | 0.0026                  | 0.0028                         | 0.0029                 | Note 1 |
|                        | 230- 216- 8350- 0000-<br>PROCESS SOLVENTS<br>SOLVENTS; CLEANUF                  | COATINGS AND RELATED<br>; PREPARATION<br>? SOLVENTS                                        | 0.0001                  | 0.0001                         | 0.0001                 | Note 1 |
|                        | 230- 218- 9100- 0000-<br>PROCESS SOLVENTS<br>BASED (ORGANIC SO<br>(UNSPECIFIED) | COATINGS AND RELATED<br>;; AUTO REFINISHING; OIL<br>LVENT BASED) COATINGS                  | 0.0004                  | 0.0004                         | 0.0004                 | Note 1 |
|                        | 240- 264- 8400- 0000-<br>INK (UNSPECIFIED)                                      | PRINTING; LITHOGRAPHIC;                                                                    | 0.001                   | 0.0012                         | 0.0013                 | Note 1 |

## $\rm PM_{2.5}$ Implementation/Maintenance Plan and Re-designation Request for Sacramento $\rm PM_{2.5}$ Nonattainment Area

October 24, 2013

| CMB Source<br>Category | El Source<br>Assignments                                        | Emission Category                                        | Emissions<br>Federal PN | , Tons/Day S<br>I₂.₅ Nonattain | Source |        |
|------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-------------------------|--------------------------------|--------|--------|
|                        |                                                                 |                                                          | 2011                    | 2017                           | 2024   |        |
|                        | 250- 292- 8200- 0000-<br>SEALANTS; ADHESIV<br>ADHESIVES AND SEA | ADHESIVES AND<br>ES AND SEALANTS;<br>LANTS (UNSPECIFIED) | 0.001                   | 0.0013                         | 0.0014 | Note 1 |
|                        | 440- 444- 7100- 0000-<br>METAL PLATING AND<br>ZINC              | METAL PROCESSES;<br>COATING OPERATIONS;                  | 0.0027                  | 0.0031                         | 0.0035 | Note 1 |
|                        | 470- 338- 0010- 0000-<br>TOWERS; HYDROCAF<br>(UNSPECIFIED)      | ELECTRONICS; COOLING<br>RBON COMPOUNDS                   | 0.002                   | 0.0032                         | 0.0032 | Note 1 |
|                        | 499- 338- 0010- 0000-<br>PROCESSES); COOLI<br>HYDROCARBON COM   | OTHER (INDUSTRIAL<br>NG TOWERS;<br>IPOUNDS (UNSPECIFIED) | 0.0049                  | 0.009                          | 0.0125 | Note 1 |
|                        | 499- 492- 0012- 0000-<br>PROCESSES); ; FUEL                     | OTHER (INDUSTRIAL<br>(UNSPECIFIED)                       | 0.0082                  | 0.0154                         | 0.0214 | Note 1 |
|                        | 499-995-0010-0000-<br>PROCESSES); OTHEF<br>COMPOUNDS (UNSPE     | OTHER (INDUSTRIAL<br>R; HYDROCARBON<br>ECIFIED)          | 0.0003                  | 0.0005                         | 0.0007 | Note 1 |
|                        | 499- 995- 0000- 0000-<br>PROCESSES); OTHEF<br>SPECIFIED         | OTHER (INDUSTRIAL<br>R; MATERIAL NOT                     | 0.0006                  | 0.0012                         | 0.0015 | Note 1 |
|                        | 540- 590- 0400- 0000-<br>ROOFING; ASPHALT I<br>ASPHALT          | ASPHALT PAVING /<br>ROOFING OPERATIONS;                  | 0.0081                  | 0.0085                         | 0.0085 | Note 1 |

Note 1: Except for on-road, CARB CEPAM: NORCAL 2012  $PM_{2.5}$  SIP Baseline Emission Projections, Section a1 - Emission Projections with External Adjustments, downloaded on October 11, 2012. On-road emissions include CARB external adjustments and are based on emissions generated by SACOG using EMFAC2011 and SACOG MTP/SCS2035 vehicle activity forecasts. On-road emissions above also include a "safety margin" for transportation conformity budget (1.88 tpd of NO<sub>X</sub> and 0.09 tpd of direct  $PM_{2.5}$  in 2017 and 2.10 tpd of NO<sub>X</sub> and 2.02 tpd of direct  $PM_{2.5}$  in 2024). ERCs plus additional adjustments from Table B5.1 and Table B5.2 are included in the table.

Note 2: Revised paved emissions provided by CARB on June 13, 2013, incorporating January 2011 Paved Road Emission Factors, and SACOG MTP SCS 2035 VMTs.

### Appendix C: Chemical Mass Balance (CMB): Modeling Parameters, Performance Metrics, and Sensitivity Analyses

As part of the maintenance demonstration analysis, we applied chemical mass balance (CMB) receptor modeling to 2009–2012 wintertime (November–February) PM<sub>2.5</sub> data. The most recent version of the United States Environmental Protection Agency (EPA) CMB model (EPA CMB v.8.2) was used. This Appendix provides supplementary information about the CMB modeling using the data collected at the Del Paso Manor (DPM) and T Street (T St.) monitoring sites. Specifically, this Appendix describes the modeling details, including the chemical species and sample dates used for the CMB modeling, and the CMB modeling results and model performance metrics, in tabular and graphical formats. Results for several sensitivity analyses are provided, including results for the ambient versus the SANDWICH<sup>1</sup>-adjusted datasets, for T St. with and without levoglucosan, and for Del Paso Manor using two datasets with carbon species from different analytical methods. The development of the wood-burning source profiles are described, as well as the CMB sensitivity tests that were conducted for the three different wood-burning profiles.

**Table C-1** summarizes the sample dates that were available for the CMB analyses. There were 44 available dates for the ambient data modeling; of these, a subset of 36 dates was available for the SANDWICH-adjusted data modeling. Twelve dates were considered "high concentration" days, each with a measured total mass greater than 18  $\mu$ g/m<sup>3</sup>. Meteorological conditions for all days analyzed were conducive for high PM<sub>2.5</sub> in Sacramento County; therefore, the results from this analysis are representative of the day types of concern for maintenance demonstration. The meteorological conditions included either a strong high pressure system over the Great Basin or an approaching cold front well offshore of California with a weak high pressure system over the Great Basin. Locally, winds were generally light to calm, and the low-level temperature inversions were moderate to strong.

**Table C-2** provides a summary of the chemical species used in the CMB modeling runs. The EPA CMB model requires a preselected set of fitting species, used in calculating source contribution estimates, and floating species, used in model validation. Ideally, fitting species are dominant and unique components of different emissions sources. Because of the limited availability of species with data above instrument method detection limits (MDL), only 18 species were included as fitting or floating species for CMB modeling of the Del Paso Manor data; one additional species, levoglucosan, was available for the T St. site. At Del Paso Manor, ten fitting species were selected to represent markers for the predominant emissions source types; at T St., levoglucosan, a unique tracer for wood-burning emissions, was also included as a fitting species. Unless otherwise noted, all results for the T St. site provided in this Appendix included levoglucosan and did not include a pure organic carbon (OC) source profile.

Since the ambient speciation data are limited in terms of unique species/source type combinations, only a handful of source types can be quantified by CMB: ammonium sulfate, ammonium nitrate, mobile sources (combined gas/diesel exhaust), dust, wood burning, and "other OC" (i.e., OC attributed to secondary formation from volatile organic compound (VOC) emissions). The ammonium sulfate, ammonium nitrate, mobile sources, dust, and wood-burning

<sup>&</sup>lt;sup>1</sup> SANDWICH is the <u>Sulfate</u>, <u>Adjusted Nitrate</u>, <u>Derived Water</u>, <u>Inferred Carbonaceous mass Hybrid material</u> balance approach.

(oak/eucalyptus composite) profiles, as well as the associated uncertainties, were provided by the California Air Resources Board (CARB) via the Sacramento Metropolitan Air Quality Management District (SMAQMD).<sup>2</sup> The "other OC" profile was composed entirely of OC and was given a mass fraction of 1, and an uncertainty of 0.1 in the profile dataset. Two additional wood-burning profiles, discussed below, were developed on the basis of the literature.

Tables C-3 through C-6 provide the CMB modeling results for the Del Paso Manor and T St. monitoring sites. The results in Tables C-3 and C-4 were generated from CMB modeling with the ambient datasets at DPM and T St., respectively, while Tables C-5 and C-6 were generated from the SANDWICH-adjusted datasets at DPM and T St. The results include the measured total mass and CMB-estimated total mass, as well as three performance metrics for the leastsquares algorithm (R-square, chi-square, and percent mass), for each sample date. The Rsquare fitting statistic, determined by a linear regression of the measured and CMB-estimated concentrations for fitting species, ranges from 0.0 to 1.0; values closer to 1.0 indicate that the CMB profiles and source contributions explain the measured concentrations, while R-square values less than 0.8 indicate that source contributions do not explain them well. The chi-square fitting statistic describes the difference between the measured and calculated concentrations for fitting species. Values less than one indicate a good fit, while values between 1 and 2 are considered acceptable. Finally, the percent mass indicates the fraction of mass that was estimated, as the sum of the individual source contribution estimates, for each sample date. Values between 80% and 120% are considered acceptable. Also included in Tables C-2 through C-5 are date-specific source contribution estimates in units of µg/m<sup>3</sup> for the major source types: ammonium sulfate, ammonium nitrate, motor vehicles, soil/dust, wood burning, and other organic carbon sources. The difference between the measured and CMB-estimated total mass is also provided for each sample date ("Unapportioned").

The CMB results were typically within acceptable ranges for the performance metrics, but the chi-square values were at the high end of the acceptable range. This may be due to the lack of unique tracers for the source types. As shown in Table C-3, average performance statistics for the CMB results using the ambient dataset at Del Paso Manor were 0.9, 5.9, and 78.4 for the Rsquare, chi-square, and percent mass, respectively. The chi-square improved to 4.1, and the percent mass improved to 79.7 when only the 12 high concentration dates were considered. Further, the sum of species in the ambient dataset typically accounted for only 80% of the measured total mass; therefore, CMB results were equivalent in the total mass apportioned (approximately 80%). As shown in Table C-4, average CMB performance statistics using the ambient dataset at T St. were better: 0.9, 4.0, and 98.4 for the R-square, chi-square, and percent mass, respectively. Levoglucosan is a unique wood-burning tracer and enables better source apportionment between source types, resulting in more total mass apportioned and improved fitting statistics. Certain sample dates had poor (less than 0.8) R-square values; these dates were often characterized by low total mass. The CMB model performance improved for the DPM SANDWICH-adjusted dataset; the R-square, chi-square, and percent mass metrics were 0.9, 4.5, and 94.8, respectively (Table C-5). The CMB model performance for the T St. SANDWICH-adjusted dataset was comparable to the ambient dataset (Table C-6).

**Figures C-1 through C-4** provide a time series of CMB-estimated source contributions by source type for each sample date; the percent mass estimated by CMB is also displayed.

<sup>&</sup>lt;sup>2</sup> Email from Janice Lam and Kasia Turkiewicz, March 17, 2009.

Appendix C: CMB Modeling Parameters, Performance Metrics, and Sensitivity Analyses Page C-2

Figures C-1 and C-2 show time series plots for the ambient datasets at DPM and T St. and Figures C-3 and C-4 show time series plots for the SANDWICH-adjusted datasets at DPM and T St. In general, the time series are consistent with the average source contributions provided in the maintenance demonstration report; both sites are predominantly influenced by ammonium nitrate and wood-burning emissions. However, at the Del Paso Manor site there are dates on which contributions from wood burning were low and mass contributions from the OC or unapportioned source types were higher than typical (greater than 10 to 20% of the total mass). On November 3, 2009, for example, the mass apportioned to "Other OC" was 32% and the unapportioned mass was 25% of the total mass. In contrast, at T St. on the same date, CMB apportioned more mass than typical (greater than 10% of the total mass) to the motor vehicles and/or dust source types.

**Figures C-5 and C-6** provide a comparison of the CMB results for the T St. site with and without the use of levoglucosan as a model fitting species. Sensitivity tests were conducted to evaluate the results when both levoglucosan data and a pure OC profile were included. The source contribution estimates for the OC source type when the OC profile was included were nearly always negative and less than the standard error, indicating that the OC profile was collinear with other profiles. Therefore, results provided here that include levoglucosan as a fitting species did not also include a pure OC profile. As shown in both the ambient and SANDWICH comparisons, the levoglucosan data enable better attribution of mass between the wood-burning and motor vehicles source types, resulting in less unapportioned mass.

**Figure C-7** shows results of a sensitivity test comparing results between two analytical methods used to determine OC and EC at the Del Paso Manor site. Beginning in 2009, the analytical method for carbon species changed, and carbon species with revised analytical methods were available for both Thermal Optical Transmittance (TOT)-based and Thermal Optical Reflectance (TOR)-based carbon parameters. Sensitivity tests were conducted to evaluate the different carbon methods relative to the carbon fractions in the source profiles. On average, the results were very similar (within 5%) for all source types; typically, model performance, including mass apportioned, was better for the TOT-based results.

Additional sensitivity tests were performed to assess the variability in results for different woodburning source profiles. The results from the wood-burning sensitivity runs are provided in **Figures C-8 and C-9**. Three wood-burning source profiles were compared: (1) a composite oak and eucalyptus profile provided by CARB<sup>3</sup>, (2) an oak profile, and (3) a composite oak, pine, and fire profile. The oak and oak/pine/fir profiles were based on reported literature<sup>4</sup>. The range in source contribution estimates for the three wood-burning profiles is displayed for each sample date in Figure C-8. The panels in Figure C-9 show the average source contributions, considering all possible dates in the dataset, for the three different wood-burning profiles.

<sup>&</sup>lt;sup>3</sup> Email from Janice Lam and Kasia Turkiewicz, March 17, 2009.

<sup>&</sup>lt;sup>4</sup> Fine, P. M., G. R. Cass, et al. (2004). "Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States." <u>Environmental Engineering</u> <u>Science</u> 21: 387-409.

### List of Figures

| Figure | Page                                                                                                                                                                                                                                                                                                       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-1.   | Time series of CMB results for the Del Paso Manor ambient datasetC-12                                                                                                                                                                                                                                      |
| C-3.   | Time series of CMB results for the T Street ambient dataset                                                                                                                                                                                                                                                |
| C-4.   | Time series of CMB results for the Del Paso Manor SANDWICH-adjusted dataset C-14                                                                                                                                                                                                                           |
| C-5.   | Time series of CMB results for the T Street SANDWICH-adjusted datasetC-15                                                                                                                                                                                                                                  |
| C-6.   | Comparison of CMB results at T Street for the ambient dataset, with levoglucosan included as a fitting species and omitting the OC profile, for all dates and high concentration dates, and without including levoglucosan as a fitting species for all dates and high concentration dates                 |
| C-7.   | Comparison of SANDWICH-adjusted CMB results at T Street with levoglucosan included as a fitting species, omitting the OC profile, for all dates and high concentration dates, and without including levoglucosan as a fitting species, omitting the OC profile, for all dates and high concentration dates |
| C-8.   | Comparison of average source contribution estimates at Del Paso Manor for all dates, for the ambient dataset with carbon species developed using different analytical methods: Thermal Optical Transmittance and Thermal Optical ReflectanceC-18                                                           |
| C-9.   | Time series of wood-burning source contribution estimates at T Street for three different wood-burning source profiles: oak/eucalyptus, oak, and oak/pine/fir                                                                                                                                              |
| C-10.  | Comparison of average source contribution estimates at T Street, including all samples dates, for the three different wood-burning source profiles: oak/eucalyptus, oak, and oak/pine/firC-19                                                                                                              |

### **List of Tables**

### Table Page Table C-1. A summary of the 44 dates available for the CMB analyses is provided.\_\_\_\_\_C-5 Table C-2. Chemical species included in the CMB model as fitting (marked with an "x") or floating species (unmarked).\_\_\_\_\_C-6 Table C-3. CMB results for the Del Paso Manor ambient dataset. C-7 Table C-4. CMB results for the T St. ambient dataset. C-9 Table C-5. CMB results for the Del Paso Manor SANDWICH-adjusted dataset. C-11 Table C-6. CMB results for the T St. SANDWICH-adjusted dataset. C-13

**Table C-1.** A summary of the 44 dates available for the CMB analyses is provided.

| Of the 44 dates, 36 dates were available for the | e SANDWICH-adjusted analyses |
|--------------------------------------------------|------------------------------|
|--------------------------------------------------|------------------------------|

| 2009        | 2010        | 2011        | 2012       |
|-------------|-------------|-------------|------------|
| 11/3/2009   | 1/2/2010    | 1/3/2011    | 1/10/2012* |
| 11/24/2009* | 1/5/2010*   | 1/9/2011    |            |
| 11/30/2009* | 1/11/2010   | 1/27/2011*  |            |
| 12/9/2009   | 1/20/2010   | 2/2/2011    |            |
| 12/15/2009  | 1/26/2010   | 2/8/2011    |            |
| 12/27/2009* | 2/1/2010    | 2/14/2011   |            |
|             | 2/7/2010    | 2/20/2011   |            |
|             | 2/16/2010   | 2/26/2011   |            |
|             | 2/22/2010   | 11/5/2011   |            |
|             | 2/25/2010   | 11/8/2011*  |            |
|             | 11/4/2010   | 11/20/2011  |            |
|             | 11/10/2010  | 11/29/2011* |            |
|             | 11/16/2010  | 12/5/2011*  |            |
|             | 11/22/2010  | 12/11/2011  |            |
|             | 11/28/2010  | 12/17/2011  |            |
|             | 12/4/2010*  | 12/20/2011  |            |
|             | 12/7/2010   | 12/29/2011* |            |
|             | 12/16/2010* |             |            |
|             | 12/22/2010  |             |            |
|             | 12/28/2010  |             |            |

The 12 dates marked with an "\*" indicate the dates included in the "high concentration" aggregates.

**Table C-2.** Chemical species included in the CMB model as fitting (marked with an "x") or floating species (unmarked).

| Species          | Fitting<br>Species | Source                             |
|------------------|--------------------|------------------------------------|
| Ammonium         | Х                  | Ammonium sulfate, ammonium nitrate |
| Bromine          |                    | Gas/diesel                         |
| Calcium          | Х                  | Dust                               |
| Chlorine         |                    | Multiple                           |
| Copper           |                    | Gas/diesel, dust                   |
| Elemental Carbon | Х                  | Wood burning, gas/diesel           |
| Iron             | Х                  | Dust                               |
| Lead             |                    | Multiple                           |
| Levoglucosan*    | Х                  | Wood burning                       |
| Manganese        |                    | Multiple                           |
| Nickel           |                    | Multiple                           |
| Nitrate          | Х                  | Ammonium nitrate                   |
| Organic carbon** | Х                  | Wood burning, gas/diesel           |
| Potassium        | Х                  | Wood burning                       |
| Silicon          | Х                  | Dust                               |
| Sodium           |                    | Multiple                           |
| Sulfate          | Х                  | Ammonium sulfate                   |
| Titanium         |                    | Multiple                           |
| Zinc             | Х                  | Multiple                           |

\* Levoglucosan data were only available for the T St. modeling runs.

\*\* Organic mass estimates were used in the SANDWICH-adjusted datasets instead of organic carbon.

Table C-3. CMB results for the Del Paso Manor ambient dataset.

Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | ос   | Motor<br>Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|-------------|--------------|---------------|-----------|-----------------|-------------------|-------------------|------|-------------------|------|--------------------|
| 11/3/2009  | 14.50            | 10.93       | 0.93         | 3.76          | 75.35     | 1.01            | 0.34              | 1.15              | 4.76 | 1.63              | 2.03 | 3.57               |
| 11/24/2009 | 27.10            | 23.13       | 0.94         | 4.02          | 85.35     | 9.98            | 0.55              | 6.31              | 3.13 | 2.07              | 1.09 | 3.97               |
| 11/30/2009 | 27.50            | 23.74       | 0.94         | 3.97          | 86.34     | 8.37            | 0.84              | 8.48              | 3.61 | 1.59              | 0.85 | 3.76               |
| 12/9/2009  | 34.70            | 27.59       | 0.97         | 2.12          | 79.51     | 12.82           | 0.62              | 4.64              | 6.71 | 2.34              | 0.46 | 7.11               |
| 12/15/2009 | 13.50            | 13.18       | 0.95         | 3.14          | 97.61     | 5.01            | 0.55              | 5.11              | 1.20 | 1.02              | 0.29 | 0.32               |
| 12/27/2009 | 26.30            | 22.85       | 0.97         | 2.11          | 86.88     | 3.77            | 1.08              | 15.46             | 1.21 | 1.10              | 0.22 | 3.45               |
| 1/2/2010   | 19.30            | 15.32       | 0.92         | 5.78          | 79.36     | 4.60            | 0.93              | 6.75              | 2.36 | 0.49              | 0.19 | 3.98               |
| 1/5/2010   | 24.80            | 20.33       | 0.94         | 4.59          | 81.97     | 2.12            | 1.43              | 12.76             | 2.60 | 0.80              | 0.62 | 4.47               |
| 1/11/2010  | 16.30            | 11.90       | 0.93         | 4.52          | 73.02     | 2.91            | 0.85              | 6.08              | 0.94 | 0.75              | 0.38 | 4.40               |
| 1/20/2010  | 2.40             | 1.28        | 0.80         | 12.83         | 53.22     | 0.64            | 0.10              | 0.19              | 0.18 | 0.11              | 0.06 | 1.12               |
| 1/26/2010  | 5.20             | 3.76        | 0.80         | 13.29         | 72.40     | 0.73            | 0.19              | 1.09              | 0.97 | 0.41              | 0.37 | 1.44               |
| 2/1/2010   | 15.80            | 11.74       | 0.93         | 3.92          | 74.31     | 5.35            | 0.27              | 2.91              | 1.98 | 0.97              | 0.26 | 4.06               |
| 2/7/2010   | 10.50            | 11.70       | 0.93         | 5.39          | 111.47    | 3.13            | 1.30              | 3.72              | 2.38 | 0.59              | 0.58 | -1.20              |
| 2/16/2010  | 11.90            | 10.22       | 0.94         | 4.10          | 85.85     | 2.27            | 0.60              | 3.32              | 2.17 | 0.96              | 0.90 | 1.68               |
| 2/22/2010  | 10.80            | 7.61        | 0.94         | 4.51          | 70.47     | 3.09            | 0.58              | 1.37              | 1.23 | 0.58              | 0.75 | 3.19               |
| 2/25/2010  | 10.00            | 8.78        | 0.91         | 5.62          | 87.83     | 2.83            | 0.42              | 2.26              | 1.94 | 0.82              | 0.51 | 1.22               |
| 11/4/2010  | 12.40            | 9.31        | 0.93         | 3.49          | 75.07     | 0.87            | 0.14              | 1.31              | 3.46 | 1.65              | 1.88 | 3.09               |
| 11/10/2010 | 4.30             | 4.26        | 0.90         | 6.56          | 99.01     | 1.15            | 0.31              | 1.33              | 0.72 | 0.41              | 0.34 | 0.04               |
| 11/16/2010 | 14.70            | 13.10       | 0.92         | 5.47          | 89.11     | -0.31           | 0.85              | 3.54              | 4.09 | 1.28              | 3.66 | 1.60               |
| 11/22/2010 | 5.70             | 3.44        | 0.76         | 17.80         | 60.35     | 2.08            | 0.27              | 0.56              | 0.09 | 0.27              | 0.17 | 2.26               |
| 11/28/2010 | 15.30            | 12.03       | 0.94         | 3.65          | 78.65     | 4.42            | 0.45              | 3.29              | 2.85 | 0.88              | 0.14 | 3.27               |
| 12/4/2010  | 30.30            | 25.13       | 0.95         | 2.88          | 82.94     | 4.02            | 0.82              | 17.39             | 1.61 | 0.96              | 0.32 | 5.17               |
| 12/7/2010  | 13.40            | 10.86       | 0.87         | 6.20          | 81.01     | 4.07            | -0.07             | 1.39              | 2.37 | 1.74              | 1.36 | 2.54               |

Appendix C: CMB Modeling Parameters, Performance Metrics, and Sensitivity Analyses Page C-7 13-1304 E 38 of 60

### El Dorado County AQMD Board Hearing December 3, 2013

## $\rm PM_{2.5}$ Implementation/Maintenance Plan and Re-designation Request for Sacramento $\rm PM_{2.5}$ Nonattainment Area

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | ос   | Motor<br>Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|-------------|--------------|---------------|-----------|-----------------|-------------------|-------------------|------|-------------------|------|--------------------|
| 12/16/2010 | 18.20            | 13.51       | 0.89         | 5.87          | 74.21     | 6.35            | 0.17              | 2.44              | 2.49 | 1.56              | 0.50 | 4.69               |
| 12/22/2010 | 5.90             | 4.71        | 0.80         | 8.55          | 79.75     | 1.80            | -0.13             | 0.68              | 1.20 | 0.72              | 0.42 | 1.19               |
| 12/28/2010 | 11.00            | 8.31        | 0.92         | 5.82          | 75.55     | 1.89            | 0.72              | 3.30              | 1.60 | 0.46              | 0.35 | 2.69               |
| 1/3/2011   | 14.50            | 11.36       | 0.89         | 8.45          | 78.36     | 4.16            | 0.40              | 2.62              | 2.97 | 0.63              | 0.58 | 3.14               |
| 1/9/2011   | 16.80            | 13.41       | 0.97         | 1.76          | 79.83     | 4.34            | 0.42              | 5.97              | 1.89 | 0.74              | 0.06 | 3.39               |
| 1/27/2011  | 24.40            | 16.96       | 0.94         | 4.22          | 69.51     | 1.70            | 0.93              | 8.82              | 2.11 | 1.77              | 1.63 | 7.44               |
| 2/2/2011   | 18.80            | 10.87       | 0.96         | 2.51          | 57.83     | 3.01            | 0.57              | 3.44              | 1.58 | 1.35              | 0.91 | 7.93               |
| 2/8/2011   | 1.90             | 0.95        | 0.94         | 3.04          | 49.79     | -0.01           | 0.12              | 0.11              | 0.36 | 0.16              | 0.22 | 0.95               |
| 2/14/2011  | 7.40             | 6.03        | 0.97         | 2.31          | 81.49     | 1.77            | 1.14              | 1.92              | 0.66 | 0.21              | 0.32 | 1.37               |
| 2/20/2011  | 11.70            | 8.61        | 0.91         | 5.67          | 73.61     | 3.93            | 0.29              | 1.66              | 1.89 | 0.57              | 0.28 | 3.09               |
| 2/26/2011  | 6.00             | 5.65        | 0.87         | 5.42          | 94.12     | 1.64            | 0.03              | 0.79              | 1.15 | 1.37              | 0.66 | 0.35               |
| 11/5/2011  | 10.10            | 7.48        | 0.78         | 11.59         | 74.02     | 4.48            | 0.08              | 0.83              | 1.15 | 0.70              | 0.23 | 2.62               |
| 11/8/2011  | 22.30            | 15.47       | 0.88         | 8.02          | 69.38     | 7.57            | 0.52              | 2.38              | 2.78 | 1.47              | 0.76 | 6.83               |
| 11/20/2011 | 4.20             | 3.04        | 0.58         | 28.81         | 72.26     | 1.34            | 0.08              | 0.44              | 0.66 | 0.30              | 0.22 | 1.16               |
| 11/29/2011 | 18.30            | 13.29       | 0.93         | 4.57          | 72.64     | 2.27            | 0.73              | 6.64              | 1.66 | 1.09              | 0.89 | 5.01               |
| 12/5/2011  | 25.30            | 21.74       | 0.96         | 2.42          | 85.92     | 7.50            | 0.52              | 9.18              | 1.80 | 1.54              | 1.18 | 3.56               |
| 12/11/2011 | 33.50            | 25.29       | 0.95         | 3.05          | 75.48     | 10.26           | 0.74              | 6.38              | 5.50 | 1.90              | 0.51 | 8.21               |
| 12/17/2011 | 40.70            | 31.85       | 0.94         | 4.70          | 78.25     | 10.22           | 1.25              | 13.70             | 4.97 | 1.16              | 0.55 | 8.85               |
| 12/20/2011 | 51.60            | 40.87       | 0.94         | 4.44          | 79.21     | 11.92           | 2.18              | 22.12             | 1.74 | 1.99              | 0.92 | 10.73              |
| 12/29/2011 | 52.90            | 45.31       | 0.95         | 3.64          | 85.65     | 6.21            | 1.41              | 30.34             | 4.15 | 1.67              | 1.53 | 7.59               |
| 1/10/2012  | 35.80            | 26.98       | 0.94         | 3.23          | 75.35     | 11.36           | 0.55              | 5.64              | 3.94 | 3.95              | 1.53 | 8.82               |

### Table C-4. CMB results for the T St. ambient dataset.

The dataset included levoglucosan as a fitting species and did not include a pure organic carbon source profile. CMB was not able to calculate a solution for 2/22/2010 or 12/11/2011; this often indicates collinearity between sources. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.

| Date       | Measured<br>Mass | CMB Mass | R- square | Chi- square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | Motor Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|----------|-----------|-------------|-----------|-----------------|-------------------|-------------------|----------------|------|--------------------|
| 11/3/2009  | 17.00            | 14.93    | 0.86      | 2.64        | 87.84     | 4.96            | 0.09              | 1.33              | 6.26           | 2.28 | 2.07               |
| 11/24/2009 | 28.00            | 24.77    | 0.89      | 4.47        | 88.46     | 9.95            | 0.57              | 8.25              | 3.90           | 2.10 | 3.23               |
| 11/30/2009 | 20.00            | 23.64    | 0.93      | 3.48        | 118.20    | 10.37           | 0.88              | 10.18             | 1.17           | 1.04 | -3.64              |
| 12/9/2009  | 26.00            | 25.56    | 0.91      | 5.07        | 98.31     | 19.34           | 0.69              | 5.08              | 0.26           | 0.20 | 0.44               |
| 12/15/2009 | 14.00            | 15.75    | 0.89      | 4.96        | 112.50    | 5.86            | 0.78              | 7.66              | 0.70           | 0.75 | -1.75              |
| 12/27/2009 | 28.00            | 28.15    | 0.90      | 5.05        | 100.52    | 9.82            | 1.07              | 16.88             | 0.33           | 0.06 | -0.15              |
| 1/2/2010   | 10.00            | 12.50    | 0.94      | 2.26        | 124.95    | 4.69            | 0.98              | 6.43              | 0.31           | 0.08 | -2.50              |
| 1/5/2010   | 22.00            | 22.86    | 0.92      | 3.85        | 103.90    | 6.27            | 1.86              | 13.43             | 0.87           | 0.43 | -0.86              |
| 1/11/2010  | 15.00            | 16.31    | 0.91      | 4.14        | 108.73    | 6.01            | 1.35              | 8.04              | 0.65           | 0.27 | -1.31              |
| 1/20/2010  | 3.00             | 1.96     | 0.83      | 1.84        | 65.42     | 1.28            | -0.09             | 0.31              | 0.31           | 0.16 | 1.04               |
| 1/26/2010  | 4.00             | 4.18     | 0.93      | 1.19        | 104.44    | 0.89            | 0.17              | 2.09              | 0.88           | 0.15 | -0.18              |
| 2/1/2010   | 13.00            | 12.53    | 0.89      | 4.89        | 96.35     | 5.94            | 0.51              | 5.15              | 0.44           | 0.49 | 0.47               |
| 2/7/2010   | 7.00             | 6.85     | 0.88      | 3.78        | 97.89     | 4.45            | 0.23              | 1.33              | 0.49           | 0.35 | 0.15               |
| 2/16/2010  | 13.00            | 12.85    | 0.91      | 2.99        | 98.84     | 3.76            | 0.71              | 4.33              | 2.71           | 1.35 | 0.15               |
| 2/22/2010  |                  |          |           |             |           |                 |                   |                   |                |      |                    |
| 2/25/2010  | 6.00             | 8.00     | 0.90      | 2.76        | 133.38    | 2.03            | 0.57              | 3.58              | 1.36           | 0.45 | -2.00              |
| 11/4/2010  | 17.00            | 15.10    | 0.92      | 1.70        | 88.84     | 5.14            | -0.10             | 2.58              | 5.81           | 1.68 | 1.90               |
| 11/10/2010 | 5.00             | 5.00     | 0.89      | 2.27        | 99.98     | 1.77            | 0.12              | 1.89              | 0.92           | 0.30 | 0.00               |
| 11/16/2010 | 14.00            | 13.70    | 0.95      | 1.66        | 97.85     | 3.77            | 0.86              | 5.89              | 2.30           | 0.87 | 0.30               |
| 11/22/2010 | 5.00             | 4.68     | 0.86      | 3.55        | 93.56     | 2.27            | 0.22              | 1.32              | 0.51           | 0.36 | 0.32               |
| 11/28/2010 | 8.00             | 7.39     | 0.91      | 2.86        | 92.34     | 3.31            | 0.34              | 3.29              | 0.35           | 0.09 | 0.61               |
| 12/4/2010  | 32.00            | 30.26    | 0.91      | 4.99        | 94.55     | 9.49            | 0.89              | 19.58             | 0.12           | 0.18 | 1.74               |
| 12/7/2010  | 11.00            | 13.25    | 0.88      | 4.84        | 120.50    | 8.07            | 0.00              | 2.27              | 1.34           | 1.57 | -2.25              |

Appendix C: CMB Modeling Parameters, Performance Metrics, and Sensitivity Analyses Page C-9 13-1304 E 40 of 60

### El Dorado County AQMD Board Hearing December 3, 2013

## $\rm PM_{2.5}$ Implementation/Maintenance Plan and Re-designation Request for Sacramento $\rm PM_{2.5}$ Nonattainment Area

| Date       | Measured<br>Mass | CMB Mass | R- square | Chi- square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | Motor Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|----------|-----------|-------------|-----------|-----------------|-------------------|-------------------|----------------|------|--------------------|
| 12/16/2010 | 16.00            | 18.84    | 0.83      | 9.19        | 117.76    | 11.81           | 0.36              | 4.56              | 1.09           | 1.01 | -2.84              |
| 12/22/2010 | 4.00             | 2.69     | 0.84      | 1.72        | 67.18     | 0.56            | -0.26             | 0.99              | 1.18           | 0.21 | 1.31               |
| 12/28/2010 | 13.00            | 14.42    | 0.88      | 6.19        | 110.91    | 6.86            | 0.79              | 5.58              | 0.40           | 0.79 | -1.42              |
| 1/3/2011   | 10.00            | 11.60    | 0.85      | 6.82        | 116.04    | 6.98            | 0.26              | 3.41              | 0.47           | 0.49 | -1.60              |
| 1/9/2011   | 11.00            | 12.03    | 0.82      | 8.23        | 109.36    | 5.65            | 0.29              | 5.80              | 0.18           | 0.11 | -1.03              |
| 1/27/2011  | 23.00            | 20.02    | 0.90      | 5.14        | 87.05     | 7.94            | 1.26              | 8.47              | 1.16           | 1.19 | 2.98               |
| 2/2/2011   | 9.00             | 7.47     | 0.91      | 3.10        | 82.98     | 3.67            | 0.35              | 2.19              | 0.63           | 0.62 | 1.53               |
| 2/8/2011   | 1.00             | 1.18     | 0.84      | 1.09        | 118.20    | 0.57            | 0.02              | 0.10              | 0.25           | 0.25 | -0.18              |
| 2/14/2011  | 7.00             | 5.36     | 0.93      | 1.66        | 76.60     | 1.17            | 0.89              | 1.97              | 0.98           | 0.36 | 1.64               |
| 2/20/2011  | 6.00             | 5.51     | 0.78      | 6.95        | 91.75     | 3.90            | -0.01             | 1.30              | 0.21           | 0.10 | 0.49               |
| 2/26/2011  | 4.00             | 3.74     | 0.89      | 2.01        | 93.58     | 2.48            | -0.07             | 0.67              | 0.48           | 0.18 | 0.26               |
| 11/5/2011  | 10.00            | 10.25    | 0.88      | 4.94        | 102.54    | 7.64            | -0.05             | 1.50              | 0.47           | 0.70 | -0.25              |
| 11/8/2011  | 14.00            | 14.31    | 0.91      | 4.40        | 102.20    | 9.10            | 0.52              | 3.29              | 0.71           | 0.69 | -0.31              |
| 11/20/2011 | 3.00             | 2.65     | 0.87      | 2.01        | 88.26     | 1.45            | -0.23             | 0.89              | 0.45           | 0.09 | 0.35               |
| 11/29/2011 | 21.00            | 17.88    | 0.93      | 3.11        | 85.15     | 6.89            | 1.05              | 7.94              | 1.24           | 0.76 | 3.12               |
| 12/5/2011  | 20.00            | 20.01    | 0.90      | 5.47        | 100.07    | 10.18           | 0.39              | 7.01              | 0.80           | 1.64 | -0.01              |
| 12/11/2011 |                  |          |           |             |           |                 |                   |                   |                |      |                    |
| 12/17/2011 | 36.00            | 34.21    | 0.89      | 6.68        | 95.02     | 13.12           | 1.71              | 18.24             | 0.76           | 0.39 | 1.79               |
| 12/20/2011 | 50.00            | 33.87    | 0.91      | 5.39        | 67.74     | 13.91           | 1.52              | 16.08             | 1.24           | 1.11 | 16.13              |
| 12/29/2011 | 55.00            | 49.53    | 0.92      | 5.01        | 90.05     | 16.02           | 1.45              | 29.63             | 0.69           | 1.74 | 5.47               |
| 1/10/2012  | 28.00            | 28.74    | 0.90      | 5.69        | 102.64    | 16.49           | 0.82              | 8.42              | 1.08           | 1.92 | -0.74              |

Table C-5. CMB results for the Del Paso Manor SANDWICH-adjusted dataset.

Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi-<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | ос   | Motor<br>Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|-------------|--------------|----------------|-----------|-----------------|-------------------|-------------------|------|-------------------|------|--------------------|
| 11/24/2009 | 26.40            | 25.71       | 0.94         | 4.40           | 97.38     | 9.92            | 0.69              | 5.01              | 6.93 | 2.07              | 1.09 | 0.69               |
| 11/30/2009 | 26.90            | 26.59       | 0.95         | 4.19           | 98.86     | 8.35            | 0.89              | 7.52              | 7.38 | 1.59              | 0.85 | 0.31               |
| 12/15/2009 | 13.40            | 13.43       | 0.94         | 4.02           | 100.25    | 4.99            | 0.61              | 4.10              | 2.42 | 1.02              | 0.29 | -0.03              |
| 12/27/2009 | 27.90            | 26.82       | 0.97         | 2.13           | 96.13     | 3.77            | 1.07              | 16.06             | 4.59 | 1.10              | 0.22 | 1.08               |
| 1/2/2010   | 19.20            | 18.43       | 0.93         | 5.75           | 96.00     | 4.60            | 0.93              | 6.59              | 5.63 | 0.49              | 0.19 | 0.77               |
| 1/5/2010   | 24.30            | 23.32       | 0.94         | 4.70           | 95.97     | 2.12            | 1.42              | 13.55             | 4.82 | 0.80              | 0.62 | 0.98               |
| 1/11/2010  | 13.80            | 13.08       | 0.94         | 4.60           | 94.76     | 2.91            | 0.84              | 6.27              | 1.93 | 0.75              | 0.38 | 0.72               |
| 1/20/2010  | 2.40             | 1.76        | 0.95         | 2.08           | 73.31     | 0.62            | 0.19              | -0.03             | 0.81 | 0.11              | 0.06 | 0.64               |
| 1/26/2010  | 4.80             | 4.11        | 0.89         | 6.34           | 85.60     | 0.73            | 0.24              | 0.66              | 1.70 | 0.41              | 0.37 | 0.69               |
| 2/1/2010   | 15.90            | 15.40       | 0.94         | 3.99           | 96.83     | 5.30            | 0.38              | 2.00              | 6.48 | 0.97              | 0.27 | 0.50               |
| 2/7/2010   | 9.00             | 8.93        | 0.93         | 5.30           | 99.26     | 3.12            | 1.42              | 2.82              | 0.40 | 0.59              | 0.58 | 0.07               |
| 2/16/2010  | 10.90            | 11.68       | 0.84         | 11.30          | 107.15    | 2.24            | 1.03              | 0.87              | 5.70 | 0.94              | 0.90 | -0.78              |
| 2/25/2010  | 8.80             | 8.79        | 0.91         | 5.81           | 99.90     | 2.80            | 0.58              | 1.21              | 2.88 | 0.81              | 0.51 | 0.01               |
| 11/4/2010  | 12.10            | 12.04       | 0.91         | 3.49           | 99.46     | 0.85            | 0.46              | 0.22              | 7.00 | 1.61              | 1.89 | 0.06               |
| 11/10/2010 | 3.80             | 3.92        | 0.90         | 5.74           | 103.19    | 1.14            | 0.46              | 0.45              | 1.12 | 0.40              | 0.34 | -0.12              |
| 11/22/2010 | 4.20             | 3.67        | 0.91         | 4.53           | 87.47     | 2.02            | 0.45              | -0.03             | 0.80 | 0.27              | 0.18 | 0.53               |
| 11/28/2010 | 14.80            | 13.20       | 0.95         | 3.10           | 89.16     | 4.42            | 0.46              | 3.04              | 4.26 | 0.88              | 0.14 | 1.60               |
| 12/4/2010  | 30.40            | 29.06       | 0.96         | 2.92           | 95.60     | 4.02            | 0.82              | 17.72             | 5.22 | 0.96              | 0.32 | 1.34               |
| 12/7/2010  | 10.50            | 9.97        | 0.87         | 4.51           | 94.91     | 4.02            | 0.30              | 0.15              | 2.43 | 1.70              | 1.36 | 0.53               |
| 12/16/2010 | 17.70            | 16.00       | 0.92         | 4.22           | 90.42     | 6.31            | 0.27              | 1.88              | 5.48 | 1.56              | 0.50 | 1.70               |
| 12/22/2010 | 4.70             | 4.33        | 0.87         | 3.68           | 92.20     | 1.78            | 0.04              | 0.09              | 1.29 | 0.70              | 0.43 | 0.37               |
| 12/28/2010 | 10.80            | 9.66        | 0.93         | 5.75           | 89.48     | 1.89            | 0.72              | 3.20              | 3.05 | 0.46              | 0.35 | 1.14               |
| 1/3/2011   | 13.00            | 11.28       | 0.91         | 6.96           | 86.74     | 4.15            | 0.42              | 2.28              | 3.21 | 0.63              | 0.58 | 1.72               |
| 1/9/2011   | 15.80            | 14.39       | 0.97         | 1.76           | 91.05     | 4.33            | 0.42              | 5.93              | 2.90 | 0.74              | 0.06 | 1.41               |

Appendix C: CMB Modeling Parameters, Performance Metrics, and Sensitivity Analyses

### El Dorado County AQMD Board Hearing December 3, 2013

## $\rm PM_{2.5}$ Implementation/Maintenance Plan and Re-designation Request for Sacramento $\rm PM_{2.5}$ Nonattainment Area

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi-<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | ос    | Motor<br>Vehicles | Dust | Un-<br>apportioned |
|------------|------------------|-------------|--------------|----------------|-----------|-----------------|-------------------|-------------------|-------|-------------------|------|--------------------|
| 1/27/2011  | 20.40            | 19.55       | 0.94         | 4.46           | 95.81     | 1.70            | 0.92              | 9.24              | 4.29  | 1.77              | 1.63 | 0.85               |
| 2/2/2011   | 10.80            | 11.10       | 0.90         | 6.21           | 102.82    | 2.98            | 0.90              | 1.58              | 3.41  | 1.33              | 0.91 | -0.30              |
| 2/14/2011  | 6.20             | 6.48        | 0.94         | 4.37           | 104.54    | 1.76            | 1.59              | 0.31              | 2.29  | 0.21              | 0.32 | -0.28              |
| 2/20/2011  | 9.30             | 9.07        | 0.91         | 5.70           | 97.55     | 3.84            | 0.44              | 0.78              | 3.16  | 0.56              | 0.28 | 0.23               |
| 2/26/2011  | 5.60             | 5.63        | 0.83         | 4.68           | 100.58    | 1.63            | 0.23              | 0.16              | 1.59  | 1.35              | 0.66 | -0.03              |
| 11/5/2011  | 9.80             | 8.83        | 0.94         | 2.30           | 90.12     | 4.35            | 0.31              | -0.02             | 3.26  | 0.70              | 0.24 | 0.97               |
| 11/8/2011  | 20.30            | 19.34       | 0.93         | 4.39           | 95.28     | 7.44            | 0.84              | 0.96              | 7.88  | 1.45              | 0.76 | 0.96               |
| 11/20/2011 | 3.30             | 2.77        | 0.85         | 5.50           | 83.93     | 1.30            | 0.24              | -0.09             | 0.81  | 0.29              | 0.22 | 0.53               |
| 11/29/2011 | 16.80            | 14.95       | 0.93         | 5.20           | 88.96     | 2.28            | 0.73              | 6.95              | 3.01  | 1.09              | 0.89 | 1.85               |
| 12/5/2011  | 24.70            | 23.95       | 0.97         | 2.41           | 96.96     | 7.50            | 0.54              | 8.56              | 4.62  | 1.54              | 1.18 | 0.75               |
| 12/29/2011 | 54.30            | 54.66       | 0.96         | 3.58           | 100.66    | 6.21            | 1.41              | 31.08             | 12.76 | 1.67              | 1.53 | -0.36              |
| 1/10/2012  | 35.30            | 33.14       | 0.95         | 2.95           | 93.89     | 11.31           | 0.84              | 4.26              | 11.28 | 3.93              | 1.53 | 2.16               |

### Table C-6. CMB results for the T St. SANDWICH-adjusted dataset.

The dataset included levoglucosan as a fitting species and did not include a pure organic carbon source profile. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi-<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | Motor<br>Vehicles | Dust | Un-apportioned |
|------------|------------------|-------------|--------------|----------------|-----------|-----------------|-------------------|-------------------|-------------------|------|----------------|
| 11/24/2009 | 23.00            | 23.67       | 0.88         | 5.00           | 102.90    | 10.24           | 0.95              | 6.12              | 4.36              | 2.01 | -0.67          |
| 11/30/2009 | 20.80            | 22.22       | 0.92         | 4.23           | 106.84    | 10.41           | 1.01              | 8.58              | 1.19              | 1.03 | -1.42          |
| 12/15/2009 | 12.10            | 13.77       | 0.86         | 6.16           | 113.83    | 5.17            | 0.96              | 6.15              | 0.73              | 0.77 | -1.67          |
| 12/27/2009 | 25.50            | 27.27       | 0.89         | 5.71           | 106.93    | 8.20            | 1.07              | 17.42             | 0.48              | 0.10 | -1.77          |
| 1/2/2010   | 12.20            | 12.32       | 0.94         | 2.39           | 100.94    | 5.41            | 1.10              | 5.46              | 0.27              | 0.06 | -0.12          |
| 1/5/2010   | 22.90            | 23.40       | 0.92         | 3.76           | 102.18    | 6.10            | 1.82              | 14.20             | 0.85              | 0.43 | -0.50          |
| 1/11/2010  | 17.00            | 17.12       | 0.91         | 4.05           | 100.68    | 6.86            | 1.33              | 8.06              | 0.64              | 0.23 | -0.12          |
| 1/20/2010  | 2.60             | 1.68        | 0.79         | 1.76           | 64.52     | 1.10            | 0.01              | 0.13              | 0.28              | 0.16 | 0.92           |
| 1/26/2010  | 4.00             | 3.44        | 0.82         | 2.11           | 86.02     | 0.99            | 0.67              | 0.61              | 1.04              | 0.14 | 0.56           |
| 2/1/2010   | 11.80            | 12.13       | 0.86         | 6.40           | 102.83    | 7.34            | 0.82              | 3.20              | 0.37              | 0.40 | -0.33          |
| 2/7/2010   | 5.80             | 5.85        | 0.82         | 4.35           | 100.90    | 4.11            | 0.69              | 0.19              | 0.49              | 0.37 | -0.05          |
| 2/16/2010  | 10.90            | 10.47       | 0.74         | 6.18           | 96.09     | 3.96            | 1.88              | 0.20              | 3.19              | 1.25 | 0.43           |
| 2/25/2010  | 6.70             | 6.59        | 0.82         | 4.51           | 98.36     | 2.26            | 1.16              | 1.42              | 1.30              | 0.45 | 0.11           |
| 11/4/2010  | 16.20            | 13.76       | 0.86         | 1.93           | 84.95     | 5.23            | 0.73              | 0.10              | 6.08              | 1.62 | 2.44           |
| 11/10/2010 | 3.90             | 3.83        | 0.82         | 2.55           | 98.08     | 1.72            | 0.77              | 0.20              | 0.83              | 0.31 | 0.07           |
| 11/22/2010 | 4.80             | 4.43        | 0.84         | 3.00           | 92.25     | 2.70            | 0.72              | 0.15              | 0.51              | 0.35 | 0.37           |
| 11/28/2010 | 6.50             | 6.42        | 0.90         | 2.87           | 98.78     | 2.88            | 0.53              | 2.52              | 0.38              | 0.10 | 0.08           |
| 12/4/2010  | 30.60            | 29.66       | 0.90         | 5.19           | 96.91     | 8.62            | 0.90              | 19.73             | 0.18              | 0.23 | 0.94           |
| 12/7/2010  | 11.10            | 11.74       | 0.83         | 5.46           | 105.79    | 7.94            | 0.73              | 0.15              | 1.35              | 1.56 | -0.64          |
| 12/16/2010 | 17.40            | 19.08       | 0.83         | 8.83           | 109.67    | 12.14           | 0.38              | 4.40              | 1.17              | 0.98 | -1.68          |
| 12/22/2010 | 2.40             | 1.90        | 0.75         | 1.62           | 79.08     | 0.56            | 0.13              | 0.16              | 0.83              | 0.23 | 0.50           |
| 12/28/2010 | 13.80            | 14.17       | 0.87         | 6.13           | 102.71    | 6.84            | 0.83              | 5.30              | 0.42              | 0.79 | -0.37          |
| 1/3/2011   | 10.10            | 10.49       | 0.83         | 6.99           | 103.82    | 6.28            | 0.42              | 2.74              | 0.52              | 0.52 | -0.39          |
| 1/9/2011   | 11.10            | 11.06       | 0.82         | 7.83           | 99.65     | 4.68            | 0.33              | 5.57              | 0.24              | 0.24 | 0.04           |

Appendix C: CMB Modeling Parameters, Performance Metrics, and Sensitivity Analyses Page C-13

### El Dorado County AQMD Board Hearing December 3, 2013

## $\rm PM_{2.5}$ Implementation/Maintenance Plan and Re-designation Request for Sacramento $\rm PM_{2.5}$ Nonattainment Area

| Date       | Measured<br>Mass | CMB<br>Mass | R-<br>square | Chi-<br>square | %<br>Mass | Wood<br>Burning | Ammon.<br>Sulfate | Ammon.<br>Nitrate | Motor<br>Vehicles | Dust | Un-apportioned |
|------------|------------------|-------------|--------------|----------------|-----------|-----------------|-------------------|-------------------|-------------------|------|----------------|
| 1/27/2011  | 21.60            | 20.86       | 0.90         | 5.05           | 96.56     | 8.41            | 1.21              | 8.85              | 1.23              | 1.17 | 0.74           |
| 2/2/2011   | 6.80             | 6.71        | 0.83         | 4.63           | 98.60     | 4.25            | 1.03              | 0.21              | 0.60              | 0.60 | 0.09           |
| 2/14/2011  | 5.40             | 4.66        | 0.87         | 1.89           | 86.33     | 1.27            | 1.55              | 0.18              | 1.35              | 0.32 | 0.74           |
| 2/20/2011  | 4.60             | 4.70        | 0.70         | 6.72           | 102.20    | 3.71            | 0.48              | 0.16              | 0.24              | 0.11 | -0.10          |
| 2/26/2011  | 2.90             | 2.67        | 0.83         | 1.97           | 92.13     | 1.68            | 0.21              | 0.13              | 0.44              | 0.20 | 0.23           |
| 11/5/2011  | 9.40             | 9.77        | 0.87         | 3.90           | 103.90    | 7.99            | 0.51              | 0.11              | 0.48              | 0.68 | -0.37          |
| 11/8/2011  | 13.00            | 13.49       | 0.88         | 4.77           | 103.76    | 10.04           | 1.21              | 0.88              | 0.71              | 0.65 | -0.49          |
| 11/20/2011 | 2.40             | 1.90        | 0.88         | 0.89           | 79.21     | 1.18            | 0.17              | 0.11              | 0.35              | 0.09 | 0.50           |
| 11/29/2011 | 17.90            | 16.94       | 0.91         | 3.96           | 94.62     | 5.51            | 1.04              | 8.43              | 1.13              | 0.82 | 0.96           |
| 12/5/2011  | 17.10            | 18.32       | 0.87         | 6.45           | 107.12    | 8.55            | 0.44              | 6.77              | 0.89              | 1.67 | -1.22          |
| 12/29/2011 | 50.50            | 50.74       | 0.92         | 4.91           | 100.47    | 16.31           | 1.43              | 30.56             | 0.71              | 1.73 | -0.24          |
| 1/10/2012  | 27.10            | 29.09       | 0.92         | 4.86           | 107.33    | 18.25           | 0.97              | 6.92              | 1.11              | 1.84 | -1.99          |

**Figure C-1.** Time series of CMB results for the Del Paso Manor ambient dataset. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.



**Figure C-2.** Time series of CMB results for the T St. ambient dataset. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.



**Figure C-3.** Time series of CMB results for the Del Paso Manor SANDWICH-adjusted dataset. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.



**Figure C-4.** Time series of CMB results for the T St. SANDWICH-adjusted dataset. Negative values for the "Unapportioned" source contribution estimates indicate the predicted total mass was higher than the measured total mass.



**Figure C-5.** Comparison of CMB results at T St. for the ambient dataset, with levoglucosan included as a fitting species and omitting the OC profile, for all dates and high concentration dates (a, b), and without including levoglucosan as a fitting species for all dates and high concentration dates (c, d).



**Figure C-6.** Comparison of SANDWICH-adjusted CMB results at T St. with levoglucosan included as a fitting species, omitting the OC profile, for all dates and high concentration dates (a, b) and without including levoglucosan as a fitting species, omitting the OC profile, for all dates and high concentration dates (c, d).



**Figure C-7.** Comparison of average source contribution estimates at Del Paso Manor for all dates for the ambient dataset with carbon species developed using different analytical methods: Thermal Optical Transmittance (a), and Thermal Optical Reflectance (b).







**Figure C-9.** Comparison of average source contribution estimates at T St., including all samples dates, for the three different wood-burning source profiles: (a) oak/eucalyptus, (b) oak, and (c) oak/pine/fir.



### Appendix D:Motor Vehicle Emission Budgets

The motor vehicle emissions budgets (MVEB) for NO<sub>x</sub> and PM<sub>2.5</sub> were calculated for the 2017 interim year and the 2024 maintenance year. On-road motor vehicle emission estimates were developed using the latest available transportation data and California's EMFAC2011 model. The forecasted vehicle miles traveled (VMT) and speed distributions used are based on the Sacramento region's Metropolitan Transportation Plan/Sustainable Communities Strategy 2035 (MTP/SCS 2035) adopted on April 19, 2012 and the Plan Bay Area Preferred Land Use Scenario/Transportation Investment Strategy (May 11, 2012) which was provided by the San Francisco Bay Area Metropolitan Transportation Commission (MTC) to Sacramento Area Council of Governments. The latest adjustments for recent ARB baseline controls were applied to the EMFAC2011 emissions. The transportation budgets incorporate a "safety margin" needed primarily to allow flexibility to adjust or uncertainties in rate of growth and other factors that may affect actual emission estimates. The resulting SIP control forecasted motor vehicle emissions were rounded up to whole numbers to get the MVEB. Tables D-1 and D-2 document the MVEB calculations for 2017, and 2024.

The safety margins as a percentage of the motor vehicle inventory in the plan are 5% in 2017 and 9% in 2024. These percentages are consistent with the safety margin in the Draft 2013 Ozone Plan Revision. Since the Ozone Plan does not cover 2024, the 2018 percentage of the safety margin extended to 2024 for safety margin calculation. In addition, an allowance of 0.20 tpd was added in 2024 to account for growth in  $PM_{2.5}$  emissions out to 2035. The  $PM_{2.5}$  portion of the motor vehicle emissions included tire and break wear.

### Table D-1

### Sacramento Federal Nonattainment Area Transportation Conformity Budgets for 2006 24-hour PM<sub>2.5</sub> standard Winter Planning Emissions in Tons per Day

|                                  | 201             | 7                 |
|----------------------------------|-----------------|-------------------|
|                                  | NO <sub>x</sub> | PM <sub>2.5</sub> |
| On-Road Emissions from EMFAC2011 | 37.62           | 1.78              |
| Adjustment to Baseline           | -0.55           | -0.05             |
|                                  |                 |                   |
| Net Inventory                    | 37.07           | 1.73              |
| Safety Margin                    | 1.88            | 0.09              |
| Total                            | 38.95           | 1.82              |
| Conformity Budget                | 39              | 2                 |

### Table D-2

### Sacramento Federal Nonattainment Area Transportation Conformity Budgets for 2006 24-hour PM<sub>2.5</sub> standard Winter Planning Emissions in Tons per Day

|                                  | 202             | 4                 |
|----------------------------------|-----------------|-------------------|
|                                  | NO <sub>x</sub> | PM <sub>2.5</sub> |
| On-Road Emissions from EMFAC2011 | 23.32           | 1.82              |
| Adjustment to Baseline           | -1.21           | -0.16             |
| Net Inventory                    | 22.11           | 1.66              |
| Safety Margin                    | 2.10            | 0.36              |
| Total                            | 24.21           | 2.02              |
| Conformity Budget                | 25              | 3                 |

### Appendix E: Meteorological Analysis Data

### E.1 Electronic files for the meteorological analysis

Electronic appendix is available in spreadsheet format. Here are the descriptions of each workbook and worksheet

### Workbook Name: General Statistics Rain.xlsm

| Worksheet Name | Worksheet Description                               |
|----------------|-----------------------------------------------------|
| README         | Description of each spreadsheet.                    |
| #H2            | Raw data description file                           |
| 90883          | Raw rain data from National Weather Services        |
| KSAC           | KSAC Rain data extracted from Sheet 90883           |
| PV             | Pivot Table summarizing the annual rainfall pattern |
| Fig 5.18       | Figure 5.18 of the text                             |

### Workbook Name: General Statistics.xlsm

| Worksheet Name | Worksheet Description                                                  |
|----------------|------------------------------------------------------------------------|
| README         | Description of each spreadsheet.                                       |
| Metdata-hr     | Hourly meteorological data at the Del Paso Manor Monitor               |
| Metdata-dy     | Daily summary of the meteorological data at the Del Paso Manor Monitor |
| 4am-TP         | Morning surface temperature summary and chart                          |
| 4pm-TP         | Afternoon surface temperature summary and chart                        |
| 4am-TG         | Morning temperature inversion summary and chart                        |
| 4pm-TG         | Afternoon temperature inversion summary and chart                      |
| Ave-HT         | Morning average 500mb height summary and chart                         |
| Day-DP         | Day time dew point temperature summary and chart                       |

### Workbook Name: General Statistics Wind.xlsm

| Worksheet Name | Worksheet Description                                 |
|----------------|-------------------------------------------------------|
| README         | Description of each spreadsheet.                      |
| Wind           | Hourly raw wind speed data for the Del Paso Manor and |
|                | Sacramento T Street monitors                          |
| 4pm            | 4pm data for winter months only                       |
| 12am           | 12am data for winter months only                      |
| 4pm-DPM-TST    | Afternoon wind speed summary and chart                |
| 12a-DPM-TST    | Midnight wind speed summary and chart                 |

| Worksheet Name   | Worksheet Description                                                                        |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|--|--|--|
| README           | Description of each spreadsheet.                                                             |  |  |  |
| All Days         | Raw meteorological data for the AQRules Analysis                                             |  |  |  |
| Generic Pattern  | Extraction of the meteorological data satisfied the general pattern scenario criteria        |  |  |  |
| Great Basin High | Extraction of the meteorological data satisfied the Great Basin scenario criteria            |  |  |  |
| PacNW High       | Extraction of the meteorological data satisfied the Pacific Northwest High scenario criteria |  |  |  |
| Pre-cold front   | Extraction of the meteorological data satisfied the Pre-cold front scenario criteria         |  |  |  |
| Cutoff low south | Extraction of the meteorological data satisfied the Cutoff Low South scenario criteria       |  |  |  |
| AQRules Graphs   | Summary of the AQRules results                                                               |  |  |  |
| CART Graphs      | Summary of the STI's CART Analysis Results                                                   |  |  |  |

### Workbook Name: STI AQRules Analysis.xls

### Database Name: STI CART Analysis.accdb

This is a Microsoft Access 2010 database. It includes the calculations and results of STI's CART analysis.

### E.2 CARB CART Analysis Results (Section 5.1.4)



Figure E-1 CART Results (Whole)

October 24, 2013

Appendix E: Meteorological Analysis Page E-3

13-1304 E 58 of 60



Figure E-2 CART Results (Magnified, Left)



Figure E-3 CART Results (Magnified, Right)