Appendix 2 Noise Report

El Dorado County Green Valley Road Corridor

Noise Study

July 2014

Pla

rincon

iron

m e *n*

Sc

n

13-0889 5E 2 of 24

Engineers

Green Valley Road Corridor

Noise Study

Prepared for:

Kittelson & Associates, Inc.

428 J Street, Suite 500 Sacramento, California 95814 Email: <u>csafi@kittelson.com</u> Contact: Chirag Safi

Prepared with the assistance of:

Rincon Consultants, Inc. 2220 J Street, Suite 7 Sacramento, California 95816

July 2014

This report is printed on 50% recycled paper with 10% post-consumer content and chlorine-free virgin pulp.

GREEN VALLEY ROAD CORRIDOR EL DORADO COUNTY NOISE STUDY

This report is an analysis of existing traffic noise exposure along the Green Valley Road Corridor located in El Dorado County. The report has been prepared by Rincon Consultants, Inc. under contract to Kittelson & Associates, to assess existing noise related to traffic on Green Valley Road. The purpose of this study is to analyze the Corridor's existing noise levels and noise exposure from transportation-related sources.

EXISTING NOISE SETTING

Overview of Sound Measurement

Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). The A-weighting scale is an adjustment to the actual sound pressure levels to be consistent with that of human hearing response, which is most sensitive to frequencies around 4,000 Hertz (about the highest note on a piano) and less sensitive to low frequencies (below 100 Hertz).

Sound pressure level is measured on a logarithmic scale with the 0 dB level based on the lowest detectable sound pressure level that people can perceive (an audible sound that is not zero sound pressure level). Based on the logarithmic scale, a doubling of sound energy is equivalent to an increase of 3 dBA, and a sound that is 10 dBA less than the ambient sound level has no effect on ambient noise. Because of the nature of the human ear, a sound must be about 10 dBA greater than the reference sound to be judged as twice as loud. In general, a 3 dBA change in community noise levels is noticeable, while 1-2 dBA changes generally are not perceived. Quiet suburban areas typically have noise levels in the range of 40-50 dBA, while arterial streets are in the 50-60+ dBA range. Normal conversational levels are in the 60-65 dBA range, and ambient noise levels greater than 65 dBA can interrupt conversations.

Noise levels typically attenuate (or drop off) at a rate of 6 dBA per doubling of distance from point sources (such as industrial machinery). Noise from lightly traveled roads typically attenuates at a rate of about 4.5 dB per doubling of distance. Noise from heavily traveled roads typically attenuates at about 3 dB per doubling of distance. Noise levels may also be reduced by intervening structures; generally, a single row of buildings between the receptor and the noise source reduces the noise level by about 5 dBA, while a solid wall or berm reduces noise levels by 5 to 10 dBA. Standard new residential construction typically provides a reduction of exterior-to-interior noise levels of 25 dBA or more with windows closed (Federal Transit Administration, May 2006).

In addition to the actual instantaneous measurement of sound levels, the duration of sound is important since sounds that occur over a long period of time are more likely to be an annoyance or cause direct physical damage or environmental stress. One of the most frequently used noise metrics that considers both duration and sound power level is the equivalent noise level (Leq). The Leq is defined as the single steady A-weighted level that is equivalent to the same amount

of energy as that contained in the actual fluctuating levels over a period of time (essentially, the average noise level). Typically, Leq is summed over a one-hour period. Lmax is the highest RMS (root mean squared) sound pressure level within the measuring period, and Lmin is the lowest RMS sound pressure level within the measuring period.

The time period in which noise occurs is also important since noise that occurs at night tends to be more disturbing than that which occurs during the day. Community noise is usually measured using Day-Night Average Level (Ldn), which is the 24-hour average noise level with a 10-dBA penalty for noise occurring during nighttime (10 p.m. to 7 a.m.) hours, or Community Noise Equivalent Level (CNEL), which is the 24-hour average noise level with a 5 dBA penalty for noise occurring from 7 p.m. to 10 p.m. and a 10 dBA penalty for noise occurring from 10 p.m. to 7 a.m. Noise levels described by Ldn and CNEL usually do not differ by more than 1 dB.

Green Valley Road Site Setting

The focus of this noise study is along a portion of Green Valley Road located in El Dorado County, and spanning over approximately ten miles beginning just outside the City of Folsom and passing through the communities of El Dorado Hills, Cameron Park, and Rescue. The project area contains numerous hills and varying height elevations. As part of the traffic study, Kittelson & Associates divided the project area into study segments and pinpointed intersections where traffic count data was collected. The segments and intersections included in the project area include the following:

Green Valley Road Segments:

- 1. County line to Sophia Parkway
- 2. Sophia Parkway to Francisco Drive
- 3. Francisco Drive to El Dorado Hills Blvd./Salmon Falls Road
- 4. El Dorado Hills Blvd./Salmon Falls Road to Silva Valley Parkway/Allegheny Road
- 5. Silva Valley Parkway/Allegheny Road to Malcolm Dixon Road
- 6. Malcolm Dixon Road to Deer Valley Road (West)
- 7. Deer Valley Road (West) to Bass Lake Road
- 8. Bass Lake Road to Cameron Park Drive
- 9. Cameron Park Drive to Ponderosa Road
- 10. Ponderosa Road to N. Shingle Road
- 11. N. Shingle Road to Lotus Road

Intersections

- 1. Green Valley Road at Sophia Parkway
- 2. Green Valley Road at Francisco Drive
- 3. Green Valley Road at El Dorado Hills Blvd./Salmon Falls Road
- 4. Green Valley Road at Silva Valley Parkway/Allegheny Road
- 5. Green Valley Road at Deer Valley Road (West)
- 6. Green Valley Road at Bass Lake Road
- 7. Green Valley Road at Cambridge Road/Peridot Drive
- 8. Green Valley Road at Cameron Park Drive/Starbuck Road
- 9. Green Valley Road at Deer Valley Road (East)
- 10. Green Valley Road at Ponderosa Road

- 11. Green Valley Road at N. Shingle Road
- 12. Green Valley Road at Lotus Road
- 13. Green Valley Road at Loch Way
- 14. Green Valley Road at Malcolm Dixon Road
- 15. Green Valley Road at Rocky Springs Road/Steves Way
- 16. Green Valley Road at Pleasont Grove Middle School

The most prominent sources of noise in the project vicinity are motor vehicles (e.g., automobiles, buses, trucks, and motorcycles) along Green Valley Road. Motor vehicle noise from Green Valley Road is a major influence on noise levels to nearby sensitive receptors due to the substantial level and speed of traffic, especially during peak hours. Motor vehicle noise is of concern because it is characterized by a high number of individual events, which often create a sustained noise level, and because of its proximity to noise sensitive uses. In general, Green Valley Road consists of one or two lanes in each direction with speed limits of 40 miles per hour (mph)-50 mph.

The surrounding area is characterized by hills. This results in both Green Valley Road and surrounding sensitive noise receptors to be at various heights, which may affect how traffic noise travels and its associated impact to nearby noise receptors. Additionally, the speed limits on Green Valley Road may frequently change due to vehicles needing to slow down around wide turns. Because vehicles may be constantly accelerating and decelerating, this can also be a factor influencing the level of traffic noise.

Regulatory Setting

Noise exposure goals for various types of land uses reflect the varying noise sensitivities associated with those uses. The El Dorado County General Plan Public Health, Safety, and Noise Elements describe a variety of land use and development types as noise sensitive including but not limited to residences, lodging, hospitals, churches, schools, parks, and office buildings. Maximum allowable noise standards for transportation noise sources are established according to land use as shown in Table 1. The segments of Green Valley Road that the project area comprises begin at the county line near Sophia Parkway and extend approximately 10 miles to Lotus Road. Sensitive receptors along this Corridor include numerous residences, at least two public schools, and a church.

Land Use	Outdoor Activity	Interior S	Spaces
	Areas ¹ Ldn/CNEL, dB	Ldn/CNEL, dB	Leq, dB ²
Residential	60 ³	45	
Transient Lodging	60 ³	45	
Hospitals, Nursing Homes	60 ³	45	
Theaters, Auditoriums, Music Halls			35
Churches, Meeting Halls, Schools	60 ³		40
Office Buildings			45
Libraries, Museums			45
Playgrounds, Neighborhood Parks	70		

Table 1Maximum Allowable Noise Exposure for Transportation Noise Sources

Source: El Dorado County Public Health, Safety, and Noise Element. July 2004 (Amended March 2009)

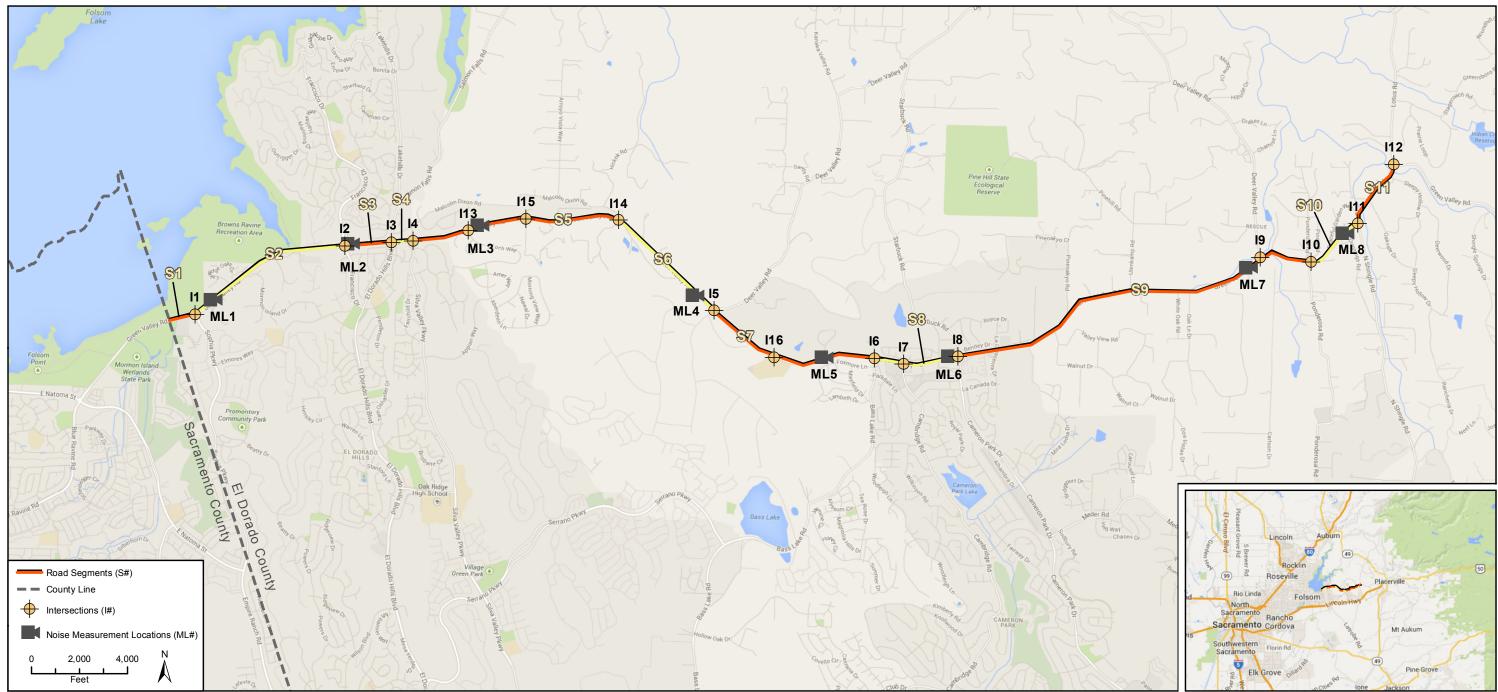
Notes:

¹ In Communities and Rural Centers, where the location of outdoor activity areas is not clearly defined, the exterior noise level standard shall be applied to the property line of the receiving land use. For residential uses with front yards facing the identified noise source, an exterior noise level criterion of 65 dB L_{dn} shall be applied at the building façade, in addition to a 60 dB L_{dn} criterion at the outdoor activity area. In Rural Regions, an exterior noise level criterion of 60 dB L_{dn} shall be applied at a 100 foot radius from the residence unless it is within Platted Lands where the underlying land use designation is consistent with Community Region densities in which case the 65 dB L_{dn} may apply. The 100-foot radius applies to properties which are five acres and larger; the balance will fall under the property line requirement.

³Where it is not possible to reduce noise in outdoor activity areas to 60 dB L_{dn} /CNEL or less using a practical application of the best-available noise reduction measures, an exterior noise level of up to 65 dB L_{dn} /CNEL may be allowed provided that available exterior noise level reduction measures have been implemented and interior noise levels are in compliance with this table.

Sensitive Receptors

There are various land uses along Green Valley Road. From the county line just outside the city of Folsom limits to El Dorado Hills Boulevard there are various commercial-use properties such as restaurants, gas stations, and supermarkets. The nearest sensitive receptors on this segment are residences that sit on hills behind these commercial-use properties. From El Dorado Hills to Bass Lake Road the land uses along the Corridor become more rural-residential, with large ranch-sized properties (greater than one-acre lot sizes) and undeveloped land between more densely-populated neighborhoods containing single-family homes with multiple units per acre. In addition to the residences along Green Valley Road that are sensitive receptors in this segment, there is also a church near Loch Way. Sensitive receptors are higher in density on this stretch proceeding east, due to the presence of Pleasant Grove Middle School and the neighborhood surrounding it. From Bass Lake Road to Cameron Park Drive the density of single-home residences increases. Proceeding generally east on Green Valley Road from Cameron Park Drive to Lotus Way, surrounding land-uses transition back to rural-residential, with an increasing density of trees on the side of the road and ranch-style homes. Sensitive receptors along this stretch of Green Valley Road include Rescue Elementary School and the Rescue Community Center.


Summary of Findings

Methodology

Traffic Data Collection for the Green Valley Road Traffic Study occurred between May 3rd and May 9th, 2014 on the established study segments. To determine existing noise levels on the project site, eight weekday afternoon 15-minute noise measurements were taken using a Rion NL-21 sound level meter on May 7th and May 8th, 2014. The date and locations of noise measurements were selected to correlate and to be consistent with the traffic data collection study time and location as well. These on-site measurements provide existing noise levels during the 3p.m.-6p.m. peak hour period, which are primarily due to roadway noise from Green Valley Road. Figure 1 shows the on-site noise measurement locations and Table 2 identifies the measured noise levels.

In addition to noise measurements, for calibration, existing traffic noise along Green Valley Road was also calculated using the Federal Highway Administration Traffic Noise Model (TNM) Version 2.5 (U.S. Department of Transportation, Federal Highway Administration [FHWA], April 2004) (noise modeling data sheets are provided in the Appendix). The model calculations are based on the traffic counts performed by Kittelson and contained within the traffic study (June 2014).

El Dorado County, Green Valley Road Green Valley Road Noise Measurement Locations

Imagery provided by Google and its licensors © 2014.

Intersections (I#)

- I1 Green Valley Road at Sophia Parkway
- I2 Green Valley Road at Francisco Drive
- 13 Green Valley Road at El Dorado Hills Blvd./Salmon Falls Road
- I4 Green Valley Road at Silva Valley Parkway/Allegheny Road
- I5 Green Valley Road at Deer Valley Road (West)
- I6 Green Valley Road at Bass Lake Road
- 17 Green Valley Road atCambridge Road/Peridot Drive
- 18 Green Valley Road at Cameron Park Drive/Starbuck Road
- 19 Green Valley Road at Deer Valley Road (East)
- 110 Green Valley Road at Ponderosa Road
- I11 Green Valley Road at N. Shingle Road
- 112 Green Valley Road at Lotus Road
- 113 Green Valley Road at Loch Way
- 114 Green Valley Road at Malcolm Dixon Road
- 115 Green Valley Road at Rocky Springs Road/Steves Way
- 116 Green Valley Road at Pleasant Grove Middle School

Road Segments (S1)

- S1 County Line to Sophia Parkway
- S2 Sophia Parkway to Francisco Drive
- S3 Francisco Drive to El Dorado Hills Blvd/Salmon Falls Road
- S4 El Dorado Hills Blvd/Salmon Falls Road to Silva Valley Parkway/Allegheny Road
- S5 Silva ValleyParkway/Allegheny Road to Malcolm Dixon Road
- S6 Malcolm Dixon Road to Deer Valley Road (West)
- S7 Deer Valley Road (West) to Bass Lake Road
- S8 Bass Lake Road to Cameron Park Drive
- S9 Cameron Park Drive to Ponderosa Road
- S10 Ponderosa Road to N. Shingle Road
- S11 N. Shingle Road to Lotus Road

Noise Measurement Locations

Figure 1

Kittelson & Associates

13-0889 5E 10 of 24

Table 2
On-Site Noise Measurement Results

Measurement Number	Measurement Location	Distance from Nearest Roadway ¹	Sample Time	Leq (dBA)
1	Green Valley Road near Sophia Parkway, next to Chevron Gas Station	45ft	Weekday between 3 and 6pm	70.7
2	Green Valley Road near Francisco Drive, in front of Chase Bank	50ft	Weekday between 3 and 6pm	68.3
3	Green Valley Road near Loch Way, entrance of church	42ft	Weekday between 3 and 6pm	69.2
4	Green Valley Road near Deer Valley Road (West), at mouth of abandoned road (Old Green Valley Road)	35ft	Weekday between 3 and 6pm	71.8
5	Green Valley Road at entrance of Travois Circle (between Alexandrite Drive and Bass Lake Drive, residential neighborhood	40ft	Weekday between 3 and 6pm	70.8
6	Green Valley Road near Cameron Park Drive/Starbuck Road, Rite-Aid parking lot	40ft	Weekday between 3 and 6pm	65.7
7	Green Valley Road near Deer Valley Road (East), Rescue Community Center	25ft	Weekday between 3 and 6pm	69.7
8	Green Valley Road near N. Shingle Road, entrance of Dunnings Road.	30ft	Weekday between 3 and 6pm	67.5

Source: Field visit on May 7th, 2014 and May 8th, 2014 using Rion NL-21 sound level meter. 1: Distance is approximate from the centerline of Green Valley Road.

2: L_{eq} refers to equivalent continuous sound pressure level [dB] Refer to Figure 1 for noise measurement locations. Refer to the Appendix for noise monitoring data sheets

Table 3 contains the noise calculations based on the existing traffic at each of the eight segments and the anticipated noise levels at sensitive receptors in close proximity to the roadway. Existing noise levels were calculated using the FHWA TNM Version 2.5. Noise modeling was conducted on the same areas where measurements were taken (as listed in Table 2). These areas are where sensitive receivers and traffic volumes on Green Valley Road are most heavily concentrated; and thus, are the locations anticipated to have the highest noise levels associated with traffic on the roadway. Noise calculations are based on traffic volumes provided in the Traffic Impact Study (Kittelson, 2014). Related information on roadway geometrics, speeds and terrain elevation were incorporated into the model. Table 3 shows modeled noise levels associated with existing traffic conditions.

Location No.	Receiver	Measured Leq (dBA)*	Modeled Leq (dBA)**
1	Green Valley Road near Sophia Parkway, next to Chevron Gas Station	70.7	71.3
2	Green Valley Road near Francisco Drive, in front of Chase Bank	68.3	69.4
3	Green Valley Road near Loch Way, entrance of church	69.2	71.4
4	Green Valley Road near Deer Valley Road (West), at mouth of abandoned road (Old Green Valley Road)	71.8	73.9
5	Green Valley Road at entrance of Travois Circle (between Alexandrite Drive and Bass Lake Drive, residential neighborhood	69.7	69.7
6	Green Valley Road near Cameron Park Drive/Starbuck Road, Rite- Aid parking lot	65.7	66
7	Green Valley Road near Deer Valley Road (East), Rescue Community Center	69.7	71.2
8	Green Valley Road near N. Shingle Road, entrance of Dunnings Road.	67.5	68.3

Table 3 TNM Noise Modeling Results

* Measured results as shown in Table 2 above.

** Modeled results are contained in full in the Appendix.

As shown in Table 3, the modeled noise levels are fairly accurate when compared to the measured noise level. Although the modeled noise levels for each of the measurement locations showed simulated results that were fairly consistent with slight variation to the measured noise levels, the difference in dBA (approximately 2.2 or less) is not to a degree that is generally perceptible to the human ear. As previously mentioned in the Overview of Sound Measurement, in general, a 3 dBA change in community noise levels is noticeable, while 1-2 dBA changes generally are not perceived. The TNM noise model is designed to model existing traffic noise exclusively. Due to the nature of the area, which is characterized by hills, frequent change in elevation, and changes in vehicle speeds due to curvature in the road at various

points throughout the Green Valley Corridor, there are factors not replicated in the TNM noise model that create variations in measured noise level.

The noise measurement locations were on the side of roadways on public space where entry and access was both safe and legally permissible. Although these measurement locations are intended to characterize sound levels to nearby sensitive receptors, the receptors in question generally are further away from the road centerline than the measurement locations but have restricted access. Therefore, to provide a general estimate of exterior noise levels at nearby sensitive receptors, in addition to the noise measurement locations, some sensitive receptors nearest to the road centerline were selected as sample noise receivers to be modeled in TNM for each of the road segments of the traffic study where a noise measurement was taken. These sample sensitive receptors include private residences, a school, and a church along the Green Valley Corridor. The modeled exterior noise levels at sensitive receptors are shown in Table 4.

Location No.	Receiver	Nearby Sensitive Receptors	Distance from Centerline	Modeled Leq (dBA)
1	Green Valley Road near Sophia Parkway, next to Chevron Gas Station	Residences (3 total)	200-275 feet	63.1 63.0 60.5
2	Green Valley Road near Francisco Drive, in front of Chase Bank	Residences	60-100 feet	65.7 67.8
3	Green Valley Road near Loch Way, entrance of church	Church	150 feet	62.7
4	Green Valley Road near Deer Valley Road (West), at mouth of abandoned road (Old Green Valley Road)	Residences	46 feet	71.3
5	Green Valley Road at entrance of Travois Circle (between Alexandrite Drive and Bass Lake Drive, residential neighborhood	Residence, School	61 feet, 200 feet	67.0 63.4
6	Green Valley Road near Cameron Park Drive/Starbuck Road, Rite- Aid parking lot	Residences	70 feet	62.1 62.1
7	Green Valley Road near Deer Valley Road (East), Rescue Community Center	Community Center, Residence	100 feet, 50 feet	64.0 67.1
8	Green Valley Road near N. Shingle Road, entrance of Dunnings Road.	Residence	75 feet	63.3

 Table 4

 TNM Noise Modeling Results for Nearby Sensitive Receptors

The modeled noise levels for nearby sensitive receptors will differ from the actual noise measurement locations due to the difference in distance from the road centerline. It is also important to note that these sensitive receptors generally sit at higher elevations and behind hills, fences, or natural sound barriers, unlike the noise measurement locations that were at grade-level and in closer proximity to exterior noise sources. As stated in Overview of Noise Measurements, standard residential construction typically provides a reduction of exterior-to-interior noise levels of 25 dBA or more with windows closed in addition to other natural sound

El Dorado County

barriers. These factors are not considered or replicated in the TNM model. Therefore, the existing noise levels for nearby sensitive receptors are likely lower than modeled in TNM.

Nevertheless, if traffic noise levels at sensitive receptors along Green Valley Road exceed County noise standards for existing exterior or interior sound levels, the following general noise reducing measures could reduce noise levels:

- Retrofit of existing structures with sound attenuating building materials where feasible
- Replace existing windows with dual-paned windows
- Install solid core exterior doors with perimeter weather stripping,
- Install air conditioning systems so that windows and doors may remain closed and situate exterior doors away from roadways.
- Relocate roof and attic vents away from Green Valley Road or other roadways.

In instances where use of these interior noise-reducing techniques is not feasible, the use of exterior noise-reducing sound barriers (earthen berms, sound walls, or some combination of the two) could be considered. Whenever possible, a combination of elements should be used, including solid fences, walls, and landscaped berms. Implementation of noise reducing measures (both exterior and interior if applicable) is expected to achieve an interior noise level reduction of approximately 25-30 dBA or greater as well as attenuate exterior noise levels to acceptable levels and would assure that sensitive receptors are not exposed to interior noise levels in excess of County standards.

REFERENCES

El Dorado County. Public Health, Safety, and Noise Element. July 2004 (Amended March 2009)

- Federal Transit Administration. *Noise and Vibration Manual*. May 2006. Accessed at http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf
- Kittelson & Associates, Inc. Summary of Segment Speed Data and Segment Traffic. June 2014.
- U.S. Department of Transportation, Federal Highway Administration. Traffic Noise Model version 2.5. April 2004.

Appendix

Noise Measurement Results TNM 2.5 Modeling Results

ſ

Chevron Gas Station Time Measurme LAeg LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause 1 5/2/2014 8:23 0:15:00 **70.7** 100.2 85.3 44.6 74.6 69.9 67.5 55.5 52.3 106 -Chase Bank Measurme LAeg LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Time 2 5/2/2014 8:53 0:15:00 **68.3** 97.8 90.1 47.6 70.6 66.2 63.8 56.3 54.5 107 --Measurme LAeq LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Church Time 3 5/2/2014 9:37 0:15:00 **69.2** 98.8 84.6 37.2 73.6 69.1 66.1 47.5 43.7 99.4 -Measurme LAeq LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Abandoned Road Time 4 5/2/2014 17:24 0:15:00 **71.8** 101.3 89 40.6 76.4 71.4 66.7 49.6 47.3 104.8 -Measurme LAeq LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Travois Circle Time 5 5/2/2014 17:48 0:15:00 **70.8** 100.3 83.7 43.3 74.8 71.1 68.2 52.8 50.1 103.9 -- -Rite Aid Measurme LAeq LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Time 50.2 69.7 65.5 62.7 55.9 54.4 6 5/2/2014 18:21 0:15:00 **65.7** 95.2 80.7 98.8 -Community Center Measurme LAeq LAE LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Time 7 5/2/2014 18:45 0:15:00 **69.7** 99.2 88.1 40.1 74.1 67.1 61 47 45.2 106.6 -LAmax LAmin LA10 LA33 LA50 LA90 LA95 Lppeak Over Under Pause Dunnings Road Neighborho Time Measurme LAeg LAE 8 5/2/2014 19:09 0:15:00 **67.5** 97.1 81.3 38.1 72.3 64.7 58.8 44.8 43 100.3 ---

RESULTS: SOUND LEVELS										Gree	en Valley	Corridor	Green Valley Corridor Noise Study					
Rincon Consultants, Inc.										N	2 July 2014							
<analysis by?=""></analysis>										Ţ	TNM 2.5							
										C	lculated	Calculated with TNM 2.5	2.5					
RESULTS: SOUND LEVELS																	-	
PROJECT/CONTRACT:		Gree	en Val	Green Valley Corridor Noise Study	ridor No	ise Stu	ıdy											
RUN:		Che	vron (Chevron Gas Station	tion													
BARRIER DESIGN:		INP	UTH	INPUT HEIGHTS								Average p	Average pavement type shall be used unless	shall be us	ied ur	iless		
ATMOSPHERICS:		75 0	deg F,	75 deg F, 50% RH	-							a State hiç of a differ	a State highway agency substantiates the use of a different type with approval of FHWA.	y substantia approval of	tes th FHW	ne use A.		
Receiver																		
Name	No.	#DUs		Existing	No Barrier	rrier							With Barrier					
			Г	LAeq1h	LAeq1h	Ъ		=	Increase over existing	er exi		Туре	Calculated	Noise Reduction	uctior	-		
					Calculated		Crit'n	0	Calculated	ç		Impact	LAeq1h	Calculated	Goal	a	Calcu	Calculated
										Su	Sub'l Inc						minus	^S
																	Goal	
			d	dBA	dBA		dBA	dB	ω	dB	~		dBA	dB	dB		dB	
Residence				0.0	0	63.1		66	6	63.1	10	-	63.1		0.0	~	8	-8.0
Residence		N	_	0.0	0	63.0		66	6	63.0	10	-	63.0		0.0	~	8	-8.0
Residence		ω		0.0	0	60.5		66	6	60.5	10		60.5		0.0	~	8	-8.0
Measurement Location		4	_	0.0	0	71.3		66	7,	71.3	10	Snd Lvl	71.3		0.0	~	8	-8.0
Dwelling Units		# DUs		Noise Reduction	duction													
			2	Min	Avg		Max											
			a	dB	dB		dB											
All Selected			4	0.0	0	0.0		0.0										
All Impacted				0.0	0	0.0		0.0										
All that meet NR Goal			0	0.0	0	0.0		0.0										
										- THE PARTY OF THE	Contraction of the second second	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL	NAME OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY ADDRESS OF TAXABLE PARTY.		The local data was a second data was a			A CONTRACTOR OF

C:\TNM25\PROGRAM\Chevron Gas Station

-

13-0889 5E 17 of 24

RESULTS: SOUND LEVELS								0	Green Valle	y Corridor	Green Valley Corridor Noise Study				
Rincon Consultants, Inc.									2 July 2014	4					
<analysis by?=""></analysis>									TNM 2.5						
									Calculate	Calculated with TNM 2.5	12.5				
RESULTS: SOUND LEVELS														-	
PROJECT/CONTRACT:		Green V	alley Co	orridor	Green Valley Corridor Noise Study	tudy									
RUN:		Chase Bank	Bank												
BARRIER DESIGN:		INPUT	INPUT HEIGHTS	s						Average	pavement typ	Average pavement type shall be used unless	ed unles	\$	
ATMOSPHERICS:		75 deg	75 deg F, 50% RH	£						a State hi of a differ	ghway agend ent type with	a State highway agency substantiates the use of a different type with approval of FHWA.	ites the u FHWA.	ISe	
Receiver															
Name	No.	#DUs	Existing		No Barrier						With Barrier				
			LAeq1h		LAeq1h		In	Increase over existing	existing	Туре	Calculated	Noise Reduction	uction		
				Cal	Calculated	Crit'n	0	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	3 0	Calculated minus
														Q	Goal
			dBA	dBA		dBA	dB	ω.	dB		dBA	dB	dB	d	dB
Measurement Location		-	_	0.0	69.4	4	66	69.4	10	Snd Lvl	69.4		0.0	8	-8.0
Residence	2	-	~	0.0	65.7	7	66	65.7	7 10		65.7		0.0	8	-8.0
Residence	ω	-	0	0.0	67.8		66	67.8	3 10) Snd Lvl	67.8		0.0	8	-8.0
Dwelling Units		# DUs	Noise Reduction	Reducti	ion										
			Min	Avg	g	Max									
			dB	dB		dB									
All Selected		з	_	0.0	0.0		0.0								
All Impacted		2	_	0.0	0.0		0.0								
All that meet NR Goal		0	0	0.0	0.0		0.0								

RESULTS: SOUND LEVELS								0	Green Valley	/ Corridor	ley Corridor Noise Study					
Rincon Consultants, Inc.									2 July 2014	4						
<analysis by?=""></analysis>									TNM 2.5							
									Calculated with TNM 2.5	with TNM	2.5					
RESULTS: SOUND LEVELS																
PROJECT/CONTRACT:		Green	Green Valley Corridor Noise Study	ridor	Noise S	tudy										
RUN:		Church	-													
BARRIER DESIGN:		INPUT	INPUT HEIGHTS	•						Average p	Average pavement type shall be used unless	shall be u	used u	Inless		
ATMOSPHERICS:		71 deg	71 deg F, 50% RH	T						a State hig of a differ	a State highway agency substantiates the use of a different type with approval of FHWA.	substant	iates of FHV	the use VA.		
Receiver																
Name	No.	#DUs	Existing	No	No Barrier						With Barrier					
			LAeq1h	LAe	LAeq1h			Increase over existing	existing	Туре	Calculated	Noise Reduction	ductio	ž		
				Cal	Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated		Goal	Calc	Calculated
									Sub'l Inc						minus	us
															Goal	-
			dBA	dBA		dBA		dB	dB		dBA	dB	dB	ω	dB	
Measurement Location			0.0	0	71.4	4	66	71.4	10	Snd Lvl	71.4		0.0		8	-8.0
Church		2	0.0	0	62.7	7	66	62.7	10		62.7		0.0		8	-8.0
Dwelling Units		# DUs	Noise Reduction	educt	ion											
			Min	Avg	9	Max										
			dB	dB		dB										
All Selected		2	0.0	0	0.0	0	0.0									
All Impacted		-	0.0	0	0.0	0	0.0									
All that meet NR Goal		0	0.0	0	0.0	0	0.0									

-

~
-
111
S
~
-
_
-
RESULTS:
S
••
10
S
0
$\underline{\sim}$
-
~
SOUND
$\mathbf{}$
-
-
т
-
<u></u>
LEVELS
-
5.
S

Green Valley Corridor Noise Study

Calculated with TNM 2.5

2 July 2014 **TNM 2.5**

<Analysis By?> **Rincon Consultants, Inc.**

RESULTS: SOUND LEVELS

RUN: PROJECT/CONTRACT:

Green Valley Corridor Noise Study Abandoned Road

Name Receiver ATMOSPHERICS: **BARRIER DESIGN:** All Impacted All Selected Resience **Dwelling Units** Measurement Location Residence No. ω N #DUs # DUs Noise Reduction **INPUT HEIGHTS** 68 deg F, 50% RH οωω Existing dBA Min dB LAeq1h 0.0 0.0 **No Barrier** Avg LAeq1h dBA dB Calculated 71.3 71.3 73.9 0.0 0.0 Crit'n dBA Max dB 0.0 0.0 66 66 dB Calculated Increase over existing 71.3 73.9 71.3 Crit'n dB Sub'l Inc 10 10 Snd Lvl Type Impact a State highway agency substantiates the use of a different type with approval of FHWA. Average pavement type shall be used unless Snd Lvl Snd Lvl dBA Calculated LAeq1h With Barrier 71.3 73.9 71.3 Calculated Goal **Noise Reduction** dB 0.0 0.0 dB **60** 00 œ dB Goal minus Calculated -8.0 -8.0 -8.0

All that meet NR Goal

0.0

0.0

-

Rincon Consultants, Inc. 2 July 2014 TIM 2.5 TIM 2.5 Calculated with TNM 2.5 State highway agency substantiates the use Mol Barrier With Barrier With Calculated Crift Calculated Cr	RESULTS: SOUND LEVELS								0	breen Valle	y Corridor	Green Valley Corridor Noise Study				
ysis By?> Travels Corridor Noise Study Travels Circle INPUT HEIGHTS Study Travels Circle INPUT HEIGHTS Study Travels Circle INPUT HEIGHTS Study Travels Circle INPUT HEIGHTS Study Input HEIGHTS	Rincon Consultants, Inc.									2 July 201	4					
LTS: SOUND LEVELS Green Valley Corridor Noise Study Travois Circle INPUT Travois Circle INPUT HEIGHTS View of travois Study Travois Circle INPUT HEIGHTS View of travois Circle Increase over existing Calculated Crit'n Calculated Coritin Calculated Crit'n Calculated Corit'n Calculated Corit'n Calcu	<analysis by?=""></analysis>									TNM 2.5						
LTS: SOUND LEVELS Green Valley Corritor Noise Study Travois Circle INPUT HEIGHTS IER DESIGN: SPHERICS: Solver F Ver #DUs Existing No. #Edgth LAeqth Increase over existing Calculated Increase over existing Sol No. #Increase over existing Calculated Crit'n Calculated Crit'n Sub'l Inc urement Location 1 1 0.0 69.7 66 69.7 10 Ing Units # DUs Noise Reduction Max Max 4B										Calculated	d with TNN	2.5				
ECT/CONTRACT: Green Valley Corridor Noise Study Travois Circle INPUT HEIGHTS Travois Circle INPUT HEIGHTS SPHERICS: 68 deg F, 50% RH K Mo Barrier Increase over existing Calculated Increase over existing Calculated Increase over existing Calculated Increase over existing Calculated Mo Barrier ver 1 1 0.0 69.7 Calculated Crit'n Calculated Crit'n Calculated Crit'n Calculated Min MB	RESULTS: SOUND LEVELS														-	
Travois Circle INPUT HEIGHTSINPUT HEIGHTSSPHERICS:Subrur HEIGHTSVerVerVerNo. BarrierVerIncrease over existing CalculatedOB BarrierVerCrit'n CalculatedCrit'n CalculatedCrit'n CalculatedCrit'n CalculatedColspan="6">Crit'n CalculatedIncrease over existing CalculatedCrit'n CalculatedColspan="6">Crit'n CalculatedColspan="6">Crit'n CalculatedIncrease over existing CalculatedColspan="6">Crit'n CalculatedColspan="6">Colspan="6">Crit'n CalculatedColspan="6">Crit'n CalculatedIncrease over existing CalculatedColspan="6">Crit'n CalculatedColspan="6">Colspan="6">Crit'n CalculatedCalculated ColIncrease over existing CalculatedColspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Collated Colspan="6">Colspan="6">Colspan="6">Collated Colspan="6">Colspan="6"Colspan="6"Col	PROJECT/CONTRACT:		Green \	/alley Co	rridor	Noise St	tudy									
IIER DESIGN: INPUT HEIGHTS SPHERICS: 68 deg F, 50% RH Ver Increase over existing Mo. #DUs Existing No Barrier. Increase over existing LAeq1h LAeq1h Calculated Crit'n Calculated Crit'n urement Location 1 1 0.0 66 69.7 10 urement Location 2 1 1 0.0 66 69.7 10 urement Location 2 1 1 0.0 66 69.7 10 urement Location 1 1 1 0.0 66 69.7 10 urement Location 2 1 0.0 66 67.0 10 urement Location 2 1 0.0 66 63.4 10 urement Location 2 1 0.0 0.0 0.0 0.0 0.0 urement Location 2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RUN:		Travois	Circle												
SphEricS: 68 deg F, 50% RH ver Mo. #DUs Existing No. Increase over existing Image: No Barrier	BARRIER DESIGN:		INPUT	HEIGHTS	0,						Average p	avement type	shall be us	ed unle	SS	
ver No. #DUS Existing No. Existing Increase over existing Imment Location 1 1 0.0 69.7 66 69.7 10	ATMOSPHERICS:		68 dea	F. 50% R	Î						a State hi	ghway agenc	y substantia approval of	tes the	use	
No. #Dus and participation Existing and participation No. Barrier LAeq1h Increase over existing participation Type participation With Barrier participation Noise Reduction Calculated Chritin participation Max BA dB GB GB GB GB GB GB GB GB GB GD	Receiver															
LAeq1hLAeq1hIncrease over existing calculatedType calculatedCalculated impactNoise Reduct calculatedn110.069.76669.710Max<	Name	No.	#DUs	Existing		Barrier						With Barrier				
Calculated Crit'n Calculated Crit'n Impact Impact LAeq1h Calculated Calculated Sub'l Inc Impact LAeq1h Calculated Calculated Sub'l Inc Impact LAeq1h Calculated Calculated Sub'l Inc Impact LAeq1h Calculated </td <td></td> <td></td> <td></td> <td>LAeq1h</td> <td>Ā</td> <td>eq1h</td> <td></td> <td></td> <td>Increase over</td> <td>existing</td> <td>Туре</td> <td>Calculated</td> <td>Noise Redu</td> <td>iction</td> <td></td> <td></td>				LAeq1h	Ā	eq1h			Increase over	existing	Туре	Calculated	Noise Redu	iction		
					Cal	culated	Criťn		Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated	ilated
															Goal	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				dBA	dB/	ч	dBA		dB	dB		dBA	dB	dB	dB	
2 1 0.0 67.0 66 67.0 10 Snd Lvi 67.0 3 1 0.0 63.4 66 63.4 10 63.4 #DUS Noise Reduction Min Avg Max 68 67.0 10 63.4 10 63.4 4B Ag Ag <td>Measurement Location</td> <td></td> <td>_</td> <td>0</td> <td>Ö</td> <td>69.</td> <td>7</td> <td>66</td> <td>69.7</td> <td></td> <td></td> <td>69.7</td> <td></td> <td>0</td> <td>8</td> <td>-8.0</td>	Measurement Location		_	0	Ö	69.	7	66	69.7			69.7		0	8	-8.0
3 1 0.0 63.4 66 63.4 10 63.4 # DUS Noise Reduction V	Residence	N	-	0	ò	67.0	0	66	67.0			67.0		0	8	-8.0
# DUs Noise Reduction Min Avg Max dB dB dB dB 2 0.0 0.0 0.0 0 0.0 0.0 0.0	School	G		0	0	63.4	4	66	63.4			63.4		0	8	-8.0
Min Avg Max dB dB dB dB 2 0.0 0.0 0.0 0 0.0 0.0 0.0	Dwelling Units		# DUs	Noise R	educt	lion										
dB dB dB dB 3 0.0 0.0 0.0 2 0.0 0.0 0.0 0 0.0 0.0 0.0				Min	Av	ġ	Max									
3 0.0 0.0 2 0.0 0.0 0 0.0 0.0				dB	dB		đB									15
0 0.0 0.0 0.0	All Selected		ω		ö	0.0	0	0.0								
0 0.0 0.0	All Impacted		2		0	0.0	0	0.0								
	All that meet NR Goal		0		0	0.0	0	0.0								

-

13-0889 5E 21 of 24

RESULTS: SOUND LEVELS								0	Freen Valle	y Corridor	Green Valley Corridor Noise Study	ły				
Rincon Consultants, Inc.									2 July 2014	4						
<analysis by?=""></analysis>									TNM 2.5							
									Calculate	Calculated with TNM 2.5	12.5					
RESULTS: SOUND LEVELS																
PROJECT/CONTRACT:		Green	Green Valley Corridor Noise Study	orridor	Noise St	udy										
RUN:		Rite Aid	đ													
BARRIER DESIGN:		INPUT	INPUT HEIGHTS	Ś						Average p	avement ty	ype sh	Average pavement type shall be used unless	l unless		
ATMOSPHERICS:		68 deg	68 deg F, 50% RH	RH						a State hig of a differ	ghway agei ent type wi	ncy su ith app	a State highway agency substantiates the use of a different type with approval of FHWA.	s the us HWA.	se	
Receiver																
Name	No.	#DUs	Existing		No Barrier						With Barrier	ier				
			LAeq1h	LAeq1h	q1h		In	Increase over existing	existing	Type	Calculated		Noise Reduction	tion		
				Calo	Calculated	Crit'n	C,	Calculated	Crit'n	Impact	LAeq1h	C	Calculated	Goal	Calc	Calculated
									Sub'l Inc						minus	SI
															Goal	
			dBA	dBA		dBA	dB	~	dB		dBA	dB		dB	dB	
Measurement Location		_	_	0.0	66.0		66	66.0	10	Snd Lvl	6	66.0	0.0		8	-8.0
Residence	2		_	0.0	62.1		66	62.1	10		6	62.1	0.0		8	-8.0
Residence	з		_	0.0	62.1		66	62.1	10		6	62.1	0.0		œ	-8.0
Dwelling Units		# DUs	Noise Reduction	Reducti	on											
			Min	Avg	-	Max										
			dB	dB		dB										
All Selected		3		0.0	0.0	-	0.0									
All Impacted		_		0.0	0.0		0.0									
All that meet NR Goal		0		0.0	0.0		0.0									

-

RESULTS: SOUND LEVELS Rincon Consultants, Inc. <analysis by?=""> RESULTS: SOUND LEVELS PROJECT/CONTRACT:</analysis>		Gree	n Valle	y Corri	Green Valley Corridor Noise Study	bise Stt	udy		Green 2 Ju TNA Calc	reen Valley 2 July 2014 7 TNM 2.5 Calculated	reen Valley Corridor Nois 2 July 2014 TNM 2.5 Calculated with TNM 2.5	Green Valley Corridor Noise Study 2 July 2014 TNM 2.5 Calculated with TNM 2.5					
RUN: BARRIER DESIGN:		Comr	nunity THEI	Community Center		ne aci	uuy				Average (pavement typ	e shal	ll be used	unles	20	
BARRIER DESIGN: ATMOSPHERICS:		68 de	INPUT HEIGHTS 68 deg F, 50% RH	INPUT HEIGHTS 68 deg F, 50% RH							Average p a State hi of a differ	Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.	e shal y sub appro	ll be used stantiate oval of Fl	l unles s the u HWA.	se	
Receiver																	
Name	No.	#DUs		Existing	No Barrier	rrier						With Barrier					
			LAe	LAeq1h	LAeq1h	h			Increase over existing	ting	Type	Calculated	Nois	Noise Reduction	tion		
					Calculated		Crit'n		Calculated Crit'n Sub'l I	Crit'n Sub'l Inc	Impact	LAeq1h	Calc	Calculated	Goal		Calculated minus
																-	Goal
			dBA		dBA		dBA		dB dB			dBA	dB		dB	-	dB
Measurement Location			<u> </u>	0.0		71.2		66	71.2	10	Snd Lvl	71.2		0.0		œ	
Rescue Community Center	2		<u>د</u>	0.0		64.0		66	64.0	10		64.0	0	0.0		8	
Residence	3		<u> </u>	0.0		67.1		66	67.1	10	Snd Lvl	67.1	-	0.0		8	
Dwelling Units		# DUs		ise Rec	Noise Reduction	-											
			Min	-	Avg		Max										
			dB		dB		dB										
All Selected			ω	0.0		0.0		0.0									
All Impacted			N	0.0		0.0		0.0									
All that meet NR Goal			0	0.0		0.0		0.0									

~

RESULTS: SOUND LEVELS Rincon Consultants, Inc. <analysis by?=""> RESULTS: SOUND LEVELS PROJECT/CONTRACT: RUN:</analysis>		Green \ Dunnin	Green Valley Corridor Noise Study Dunnings Road Neighborhood	idor Nois eighborh	e Stud	¥.		Q	reen Valley Corridor Nois 2 July 2014 TNM 2.5 Calculated with TNM 2.5	y Corridor 4 4 with TNN	Green Valley Corridor Noise Study 2 July 2014 TNM 2.5 Calculated with TNM 2.5				
BARRIER DESIGN: ATMOSPHERICS:		INPUT 68 deg	INPUT HEIGHTS 68 deg F, 50% RH							Average p a State hi of a differ	avement type ghway agenc; ent type with	app	all be u ibstantia proval of	Average pavement type shall be used unle a State highway agency substantiates the of a different type with approval of FHWA.	Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.
Receiver												-			
Name	No.	#DUs	Existing LAea1h	No Barrier	ier		Incr	Increase over existing	existina	Туре	With Barrier Calculated	Noise	Red	Noise Reduction	Reduction
				Calculated		Crit'n	Calo	Calculated	Crit'n	Impact	LAeq1h	Calculated	ateo		ated Goal Calculated
									Sub'l Inc						minus
															Goal
			dBA	dBA	d	dBA	dB		dB		dBA	dB		dB	dB dB
Measurement Location		-	0.0		68.3	6	66	68.3	10	Snd Lvl	68.3			0.0	0.0
Residence	2		0.0		63.3	•	66	63.3	10	-	63.3		_	0.0	0.0 8
Dwelling Units		# DUs	Noise Reduction	duction											
			Min	Avg	_	Max									
			dB	dB	•	dB									
All Selected		2	0.0		0.0	0	0.0								
All Impacted		_	0.0		0.0	0	0.0								
All that meet NR Goal		0	0.0	-	0.0	0	0.0								

13-0889 5E 24 of 24