Kimley »Horn

Memorandum

To:Jeremy Sutter, Jeffrey DeMure + AssociatesFrom:Matt Weir, P.E., T.E., PTOE

Re: Supplemental Traffic Analysis – Revised Project Access El Dorado Hills Memory Care Center

Date: January 11, 2017

Per your request, we have completed this supplemental traffic analysis to document the effect of modified site access on the conclusions documented in the original traffic study completed by our office for the subject project¹. The modified access, which eliminates access from Green Valley Road and incorporates a right-turn in only driveway along Francisco Drive, is depicted in **Exhibit 1**. This access condition maintains the full access driveway that was originally included along Cambria Way. The modified project's study intersections² are shown in **Exhibit 2**. Using the same trip generation data per the original traffic study, the site generated trips were assigned to the study intersections based on the revised project access conditions. The revised project trip assignment is shown in **Exhibit 3**. Finally, the revised "plus project" traffic volumes for both Existing (2015) and Near-Term (2025) Conditions are depicted in **Exhibit 4** and **Exhibit 5**, respectively.

The intersection Level of Service (LOS) analyses for these revised access conditions were completed in a manner consistent with the original traffic study. Accordingly, the updated LOS results are presented in **Table 1** and **Table 2** below.

		Analysis	Traffic	AM Peak-Ho	bur	PM Peak-Ho	our		
#	Intersection	Analysis Scenario ⁺	Control	Delay (seconds)	LOS	Delay (seconds)	LOS		
1	Green Valley Road @	Exist.	Cignal	43.7	D	29.9	С		
T	Francisco Drive	Exist.+PP	Signal	43.8	D	31.7	С		
2	Francisco Drive @	Exist.	SSSC*	36.2 (EB)	E	34.5 (EB)	D		
2	Cambria Way/Embarcadero Drive	Exist.+PP	333C	36.6 (EB)	Е	36.8 (EB)	Е		
2	El Dorado Hills Boulevard @	Exist.	AWSC See original traffic study						
3	Francisco Drive	Exist.+PP	AVVSC	See	irajjić study				
4	Green Valley Road @	Exist.		Plus Project Ana	lysis Sco	enarios Only			
4	Project Site Access Driveway	Exist.+PP	SSSC [*]	0.0 (SB)	А	0.0 (SB)	А		
_ Cambria Way @ Exist. Plus Project Analysis Scenarios Only									
5	Project Site Access Driveway	А	8.8 (SB)	А					
	st. = Existing (2015), Exist. + PP = Existing (2015) plus ntrol delay for worst minor approach (worst minor n		-						

Table 1 – Existing (2015) and Existing (2015) plus Proposed Project Intersection Levels of Service

ATTACHMENT T

 ¹ Traffic Impact Analysis, El Dorado Hills Memory Care Center (WO#22), Kimley-Horn and Associates, Inc., June 5, 2015.
 ² Please note that Intersection #3 (El Dorado Hills Boulevard @ Francisco Drive) is unaffected by the revised access conditions documented in this memorandum. Accordingly, the results from the original Traffic Impact Analysis are not replicated in this documentation.

Kimley » Horn

		Analysis	Traffic	AM Peak-H	lour	PM Peak-H	lour		
#	Intersection	Analysis Scenario ⁺	Control	Delay (seconds)	LOS	Delay (seconds)	LOS		
1	Green Valley Road @	NT	Signal	44.6	D	46.3	D		
Т	Francisco Drive	NT+PP	Signal	44.7	D	49.7	D		
2	Francisco Drive @	NT	SSSC*	28.1 (EB)	D	43.6 (EB)	E		
Z	Cambria Way/Embarcadero Drive	NT+PP	333C	27.9 (EB)	D	46.8 (EB)	Е		
3	El Dorado Hills Boulevard @	NT	AWSC See origing			nauffia atu du			
3	Francisco Drive	NT+PP	AWSC	See	raffic study				
4	Green Valley Road @	NT		Plus Project Ana	lysis Scer	narios Only			
4	Project Site Access Driveway	NT+PP	SSSC*	0.0 (SB)	А	0.0 (SB)	А		
Cambria Way @ NT Plus Project Analysis Scenarios Only									
5	Project Site Access Driveway	NT+PP	SSSC [*]	8.7 (SB)	А	8.8 (SB)	А		
	= Near-Term (2025), NT + PP = NT (2025) plus Propo ntrol delay for worst minor approach (worst minor n		SSSC.						

Table 2 – Near-Term (2025) and Near-Term (2025) plus Proposed Project Intersection Levels of Service

As indicated in **Table 1** and **Table 2**, the study intersections operate from LOS A to LOS E with the addition of project traffic during the AM and PM peak-hours. The analysis worksheets for this scenario are provided in **Appendix A** and **Appendix B**.

We also completed a planning level assessment of the need for traffic signalization for the un-signalized study intersections under the conditions resulting from the revised project access. This evaluation was performed consistently with the peak-hour warrant methodologies noted in Section 4C of the *California Manual on Uniform Traffic Control Devices (CMUTCD), 2014 Edition*. A summary of the peak-hour warrant results is presented in **Table 3**.

			Analysis	Scenario					
#	Intersection	Existing (2015)	Existing (2015) plus PP	Near-Term (2025)	Near-Term (2025) plus PP				
2	Francisco Dr @ Cambria Wy	No / No	No / No	No / No	No / No				
3	El Dorado Hills Blvd @ Francisco Dr	See original traffic study							
4	Cambria Way @ Project Access Dwy		No / No		No / No				
5	Green Valley Rd @ Site Access Dwy		No / No		No / No				
	Results are presented in AM / PM format. Note: Peak-hour warrant is satisfied if Condition A or B is met.								

 Table 3 – Traffic Signal Warrant Analysis Results

As shown in **Table 3**, the proposed project does not cause the peak-hour signal warrant to be satisfied at any of the study intersections. Detailed results of this analysis are presented in **Appendix C**.

Finally, vehicle queuing for the study intersections was evaluated under the conditions resulting from the revised project access. For the queuing analysis, the anticipated vehicle queues for critical movements at these intersections were evaluated. The calculated vehicle queues were compared to actual or anticipated vehicle storage/segment lengths. Results of the queuing evaluation are presented in **Table 4**. Analysis sheets that include the anticipated vehicle queues are presented in Appendices A and B. As presented in **Table 4**, the addition of the proposed project adds additional queuing to several of the study locations.

Kimley »Horn

		AM Pea	k-Hour	PM Pea	k-Hour
Intersection / Analysis Scenario	Movement	Available	95 th %	Available	95 th %
		Storage (ft)	Queue (ft)	Storage (ft)	Queue (ft)
#1, Green Valley Rd @ Francisco Dr	NB Left				
E	Existing (2015)		151		157
Existing plus Proposed	Project (2015)	200+	152	200+	162
Nea	r-Term (2025)	200	128	200	204
Near-Term plus Proposed	Project (2025)		129		207
	WB Left				
	Existing (2015)		98		259
Existing plus Proposed	Project (2015)	200	115	200	261
Nea	r-Term (2025)	200	96	200	269
Near-Term plus Proposed	Project (2025)		100		272
#2, Francisco Dr @ Cambria Way	EB Left				
E	Existing (2015)		25		25
Existing plus Proposed	Project (2015)	*	25	*	29
Nea	r-Term (2025)		25		25
Near-Term plus Proposed	Project (2025)		25		36
#3, Francisco Dr @ El Dorado Hills Blvd	NB Left				
E	Existing (2015)				
Existing	plus PP (2015)		See original	traffic study	
Nea	r-Term (2025)		See ongina	trujjic study	
Near-Term	plus PP (2025)				
#4, Francisco Dr @ Site Dwy	SB			_	
E	Existing (2015)				
Existing	plus PP (2015)	*	0	*	0
Nea	r-Term (2025)			_	
Near-Term	plus PP (2025)		0		0
#5, Cambria Wy @ Site Dwy	SB				
E	Existing (2015)				
Existing	plus PP (2015)	*	0	*	25
Nea	r-Term (2025)				
Near-Term	plus PP (2025)		0		25
Source: Highway Capacity Manual (HCM) 2010 meth * Intersection approach with available storage length Policy on Geometric Design of Highways and Streets, A	equal to segment	t length; + Dual le			ge 9-127, A

Table 4 – Intersection Queuing Evalua	ation Results for Select Locations
---------------------------------------	------------------------------------

In conclusion, based on the analyses documented in this memorandum, the revised project access does not result in any significant environmental impacts to transportation facilities as defined by the County.

Attachments:

Exhibit 1 – Revised Project Site Plan

- Exhibit 2 Revised Study Intersections, Traffic Control, and Lane Geometries
- Exhibit 3 Revised Project Trip Assignment

Exhibit 4 – Revised Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes

Exhibit 5 – Revised Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes

Appendix A – Analysis Worksheets for Existing (2015) plus Proposed Project Conditions Appendix B – Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions Appendix C – Analysis Worksheets for Traffic Signal Warrant Analyses

Source: Jeffrey DeMure + Associates Architects Planners, Inc., January 2017

Kimley **Whorn**

Exhibit 1 16-0582 2H 4 of 427

Kimley **»Horn**

Exhibit 2 Revised Study Intersections, Traffic Control and Lane Geometries 16-0582 2H 5 of 427

Kimley **»Horn**

Exhibit 4 Revised Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes

Kimley **»Horn**

Exhibit 5 Revised Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes 16-0582 2H 8 of 427

Kimley **»Horn**

Appendix A Analysis Worksheets for Existing (2015) plus Proposed Project Conditions

	≯	-	\mathbf{r}	F	1	+	×	1	Ť	1	1	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	<u></u>	1		۲	<u></u>	1	ኘኘ	A		۲	•
Traffic Volume (veh/h)	161	216	232	15	47	813	106	307	180	7	122	312
Future Volume (veh/h)	161	216	232	15	47	813	106	307	180	7	122	312
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1810	1776	1845		1900	1881	1863	1845	1863	1900	1845	1881
Adj Flow Rate, veh/h	199	267	286		54	934	122	365	214	8	158	405
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.81	0.81	0.81		0.87	0.87	0.87	0.84	0.84	0.84	0.77	0.77
Percent Heavy Veh, %	5	7	3		0	1	2	3	2	2	3	1
Cap, veh/h	190	1092	508		69	1091	483	439	1119	42	192	568
Arrive On Green	0.06	0.32	0.32		0.04	0.31	0.31	0.13	0.32	0.32	0.11	0.30
Sat Flow, veh/h	3343	3374	1568		1810	3574	1583	3408	3480	130	1757	1881
Grp Volume(v), veh/h	199	267	286		54	934	122	365	108	114	158	405
Grp Sat Flow(s), veh/h/ln	1672	1687	1568		1810	1787	1583	1704	1770	1840	1757	1881
Q Serve (q_s) , s	5.0	5.1	13.2		2.6	21.6	5.1	9.2	3.9	3.9	7.7	16.8
Cycle Q Clear(g_c), s	5.0	5.1	13.2		2.6	21.6	5.1	9.2	3.9	3.9	7.7	16.8
Prop In Lane	1.00	0.1	1.00		1.00	21.0	1.00	1.00	0.7	0.07	1.00	10.0
Lane Grp Cap(c), veh/h	190	1092	508		69	1091	483	439	569	592	192	568
V/C Ratio(X)	1.05	0.24	0.56		0.78	0.86	0.25	0.83	0.19	0.19	0.82	0.71
Avail Cap(c_a), veh/h	190	1092	508		103	1152	510	466	569	592	220	568
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.4	21.8	24.6		41.8	28.7	23.0	37.3	21.5	21.5	38.3	27.3
Incr Delay (d2), s/veh	77.6	0.1	1.4		19.3	6.3	0.3	11.6	0.2	0.2	19.7	4.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.3	2.4	6.0		1.7	11.6	2.3	5.0	1.9	2.0	4.8	9.3
LnGrp Delay(d),s/veh	119.0	21.9	26.0		61.2	35.0	23.2	48.9	21.7	21.7	58.0	31.5
LnGrp LOS	F	C	20.0 C		E	C	C	D	C	C	E	C
Approach Vol, veh/h	<u> </u>	752				1110	<u> </u>		587			1040
Approach Delay, s/veh		49.2				35.0			38.6			52.4
Approach LOS		ч <i>л.</i> 2				00.0 C			D			52.4 D
			-				_	-	D			U
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.4	34.1	15.3	31.0	9.0	32.5	13.6	32.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+l1), s	4.6	15.2	11.2	28.1	7.0	23.6	9.7	5.9				
Green Ext Time (p_c), s	0.0	7.1	0.1	0.0	0.0	3.2	0.1	5.9				
Intersection Summary												
HCM 2010 Ctrl Delay			43.8									
HCM 2010 LOS			D									
Notes												
Notos												

Kimley-Horn HCM 2010 Signalized Intersection Summary

	~
Movement	SBR
Traffic Volume (veh/h)	367
Future Volume (veh/h)	367
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1881
Adj Flow Rate, veh/h	477
Adj No. of Lanes	1
Peak Hour Factor	0.77
Percent Heavy Veh, %	1
Cap, veh/h	483
Arrive On Green	0.30
Sat Flow, veh/h	1599
Grp Volume(v), veh/h	477
Grp Sat Flow(s), veh/h/ln	1599
Q Serve(g_s), s	26.1
Cycle Q Clear(g_c), s	26.1
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	483
V/C Ratio(X)	0.99
Avail Cap(c_a), veh/h	483
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.5
Incr Delay (d2), s/veh	37.8
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	16.5
LnGrp Delay(d), s/veh	68.3
LnGrp LOS	E
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	≯	-	\mathbf{r}	4	←	•	1	Ť	1	ţ	∢	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	199	267	286	71	934	122	365	222	158	405	477	
v/c Ratio	1.00	0.26	0.42	0.81	0.85	0.21	0.78	0.22	0.73	0.78	0.88	
Control Delay	108.8	23.3	5.1	98.3	36.5	5.6	49.3	23.2	58.4	40.2	39.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	108.8	23.3	5.1	98.3	36.5	5.6	49.3	23.2	58.4	40.2	39.3	
Queue Length 50th (ft)	~65	58	0	41	257	0	105	47	88	206	182	
Queue Length 95th (ft)	#115	80	36	#115	318	34	#152	71	#139	252	233	
Internal Link Dist (ft)		586			551			197		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	199	1140	719	88	1207	615	487	1159	230	595	603	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.00	0.23	0.40	0.81	0.77	0.20	0.75	0.19	0.69	0.68	0.79	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4			- 40		ሻ	↑		ሻ	↑	1
Traffic Vol, veh/h	21	0	1	0	0	53	3	420	14	37	540	10
Future Vol, veh/h	21	0	1	0	0	53	3	420	14	37	540	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	ŧ _	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	70	70	70	80	80	80	93	93	93	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	30	0	1	0	0	66	3	452	15	42	614	11

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1197	1171	614	1164	1164	459	614	0	0	467	0	0
Stage 1	698	698	-	466	466	-	-	-	-	-	-	-
Stage 2	499	473	-	698	698	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	163	193	492	171	194	602	965	-	-	1094	-	-
Stage 1	431	442	-	577	562	-	-	-	-	-	-	-
Stage 2	554	558	-	431	442	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	140	185	492	165	186	602	965	-	-	1094	-	-
Mov Cap-2 Maneuver	140	185	-	165	186	-	-	-	-	-	-	-
Stage 1	430	425	-	575	560	-	-	-	-	-	-	-
Stage 2	491	556	-	413	425	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	36.6			11.7			0.1			0.5		
HCM LOS	E			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	965	-	-	145	602	1094	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.217	0.11	0.038	-	-	
HCM Control Delay (s)	8.7	-	-	36.6	11.7	8.4	-	-	
HCM Lane LOS	А	-	-	E	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.8	0.4	0.1	-	-	

Int Delay, s/veh	0						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		- 11	4î		
Traffic Vol, veh/h	0	0	0	494	587	4	
Future Vol, veh/h	0	0	0	494	587	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	537	638	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	-	640	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.23	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	-	-	-	-	
Pot Cap-1 Maneuver	0	474	0	-	-	-	
Stage 1	0	-	0	-	-	-	
Stage 2	0	-	0	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	474	-	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
-							

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT EBLn	1 SBT	SBR
Capacity (veh/h)	-		-
HCM Lane V/C Ratio	-		-
HCM Control Delay (s)	- (- C	-
HCM Lane LOS	- /	۰ <i>۲</i>	-
HCM 95th %tile Q(veh)	-		-

Int Delay, s/veh	0.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	4î		¥		
Traffic Vol, veh/h	0	19	11	2	3	0	
Future Vol, veh/h	0	19	11	2	3	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	12	2	3	0	

Major/Minor	Major1			Ν	Najor2		Minor2		
Conflicting Flow All	14	0			-	0	34	13	
Stage 1	-	-			-	-	13	-	
Stage 2	-	-			-	-	21	-	
Critical Hdwy	4.12	-			-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-			-	-	5.42	-	
Critical Hdwy Stg 2	-	-			-	-	5.42	-	
Follow-up Hdwy	2.218	-			-	-	3.518	3.318	
Pot Cap-1 Maneuver	1604	-			-	-	979	1067	
Stage 1	-	-			-	-	1010	-	
Stage 2	-	-			-	-	1002	-	
Platoon blocked, %		-			-	-			
Mov Cap-1 Maneuver	1604	-			-	-	979	1067	
Mov Cap-2 Maneuver	-	-			-	-	979	-	
Stage 1	-	-			-	-	1010	-	
Stage 2	-	-			-	-	1002	-	
Approach	EB				WB		SB		
HCM Control Delay, s	0				0		8.7		
HCM LOS							A		
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1					
Capacity (veh/h)	1604	-	-	- 979					
HCM Lane V/C Ratio	-	-	-	- 0.003					
HCM Control Delay (s)	0	-	-	- 8.7					
HCM Lane LOS	А	-	-	- A					

0

HCM 95th %tile Q(veh)

0

	≯	-	\mathbf{r}	ł	4	+	×.	1	Ť	1	1	Ŧ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ኘኘ	<u></u>	1		۲	^	1	ኘኘ	A		7	↑
Traffic Volume (veh/h)	445	805	321	69	75	503	93	322	260	26	113	202
Future Volume (veh/h)	445	805	321	69	75	503	93	322	260	26	113	202
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1810	1776	1845		1900	1881	1863	1845	1863	1900	1845	1881
Adj Flow Rate, veh/h	468	847	338		85	572	106	350	283	28	131	235
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86
Percent Heavy Veh, %	5	7	3		0	1	2	3	2	2	3	1
Cap, veh/h	490	1217	566		110	982	435	445	790	78	164	386
Arrive On Green	0.15	0.36	0.36		0.06	0.27	0.27	0.13	0.24	0.24	0.09	0.21
Sat Flow, veh/h	3343	3374	1568		1810	3574	1583	3408	3256	320	1757	1881
Grp Volume(v), veh/h	468	847	338		85	572	106	350	153	158	131	235
Grp Sat Flow(s), veh/h/ln	1672	1687	1568		1810	1787	1583	1704	1770	1806	1757	1881
Q Serve(g_s), s	10.2	16.1	13.2		3.5	10.4	3.9	7.5	5.4	5.5	5.5	8.5
Cycle Q Clear(g_c), s	10.4	16.1	13.2		3.5	10.4	3.9	7.5	5.4	5.5	5.5	8.5
Prop In Lane	1.00	10.1	1.00		1.00	10.4	1.00	1.00	J.T	0.18	1.00	0.5
Lane Grp Cap(c), veh/h	490	1217	566		110	982	435	445	429	438	164	386
V/C Ratio(X)	0.95	0.70	0.60		0.78	0.58	0.24	0.79	0.36	0.36	0.80	0.61
Avail Cap(c_a), veh/h	490	1431	665		121	1230	545	545	637	650	187	577
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.7	20.5	19.5		34.7	23.5	21.1	31.6	23.5	23.6	33.3	27.1
Incr Delay (d2), s/veh	29.3	1.2	17.5		24.5	0.6	0.3	6.1	0.5	0.5	19.0	1.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.8	7.6	5.8		2.5	5.2	1.7	3.9	2.7	2.8	3.5	4.5
LnGrp Delay(d),s/veh	61.0	21.7	20.6		59.3	24.0	21.4	37.7	24.0	2.0	52.3	28.6
LnGrp LOS	61.0 E	21.7 C	20.0 C		59.5 E	24.0 C	21.4 C	57.7 D	24.0 C	24.1 C	52.5 D	20.0 C
•	L	1653	C		L	763	C	D		C	D	
Approach Vol, veh/h		32.6				27.6			661			602 34.6
Approach Delay, s/veh									31.3 C			34.0 C
Approach LOS		С				С			U			U U
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	32.8	13.8	19.9	15.0	26.3	11.0	22.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	5.5	18.1	9.5	12.3	12.4	12.4	7.5	7.5				
Green Ext Time (p_c), s	0.0	8.4	0.3	3.1	0.0	8.2	0.0	4.0				
Intersection Summary												
HCM 2010 Ctrl Delay			31.7									
HCM 2010 LOS			С									
Notes												

Kimley-Horn HCM 2010 Signalized Intersection Summary

	~
Maximum	CDD
Movement	SBR
Lane Configurations	1
Traffic Volume (veh/h)	203
Future Volume (veh/h)	203
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1881
Adj Flow Rate, veh/h	236
Adj No. of Lanes	1
Peak Hour Factor	0.86
Percent Heavy Veh, %	1
Cap, veh/h	328
Arrive On Green	0.21
Sat Flow, veh/h	1599
Grp Volume(v), veh/h	236
Grp Sat Flow(s),veh/h/ln	1599
Q Serve(g_s), s	10.3
Cycle Q Clear(g_c), s	10.3
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	328
V/C Ratio(X)	0.72
Avail Cap(c_a), veh/h	490
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	27.8
Incr Delay (d2), s/veh	3.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	4.8
LnGrp Delay(d),s/veh	30.7
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	۶	-	\mathbf{r}	4	-	*	1	1	1	Ļ	∢_	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	468	847	338	163	572	106	350	311	131	235	236	
v/c Ratio	0.96	0.74	0.45	1.65	0.62	0.20	0.69	0.36	0.70	0.62	0.46	
Control Delay	69.0	27.3	4.5	363.6	28.6	2.0	41.1	24.5	59.2	36.5	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	69.0	27.3	4.5	363.6	28.6	2.0	41.1	24.5	59.2	36.5	7.2	
Queue Length 50th (ft)	~121	187	0	~121	127	0	85	63	64	106	0	
Queue Length 95th (ft)	#258	285	55	#261	192	9	#162	103	#164	175	48	
Internal Link Dist (ft)		586			551			197		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	488	1428	858	99	1227	651	543	1262	186	575	653	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.96	0.59	0.39	1.65	0.47	0.16	0.64	0.25	0.70	0.41	0.36	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Int Delay, s/veh 3.2 EBL EBT EBR WBL WBT WBR NBL NBT NBR SBU SBL SBT SBR Movement **4** 2 **5**4 4 Lane Configurations ٦ ŧ ŧ ۴ 8 20 1 86 501 520 Traffic Vol, veh/h 17 4 16 4 16 Future Vol, veh/h 17 2 8 20 1 86 4 501 16 4 54 520 16 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Stop Sign Control Stop Stop Stop Free Free Free Free Free Free Free RT Channelized None None None None ---_ --Storage Length 50 110 ---_ -----50 -Veh in Median Storage, # 0 0 0 0 -------_ _ Grade, % 0 0 0 0 --------_ 70 79 Peak Hour Factor 70 70 79 79 95 95 95 91 91 91 91 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 Mvmt Flow 24 3 11 25 109 4 527 17 4 59 18 1 571

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1289	1252	571	1241	1243	536	571	0	0	543	544	0	0
Stage 1	690	699	-	544	544	-	-	-	-	-	-	-	-
Stage 2	599	553	-	697	699	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	141	172	520	152	174	545	1002	-	-	-	1025	-	-
Stage 1	435	442	-	523	519	-	-	-	-	-	-	-	-
Stage 2	488	514	-	431	442	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	112	171	520	146	173	545	1002	-	-	~ -15	~ -15	-	-
Mov Cap-2 Maneuver	112	171	-	146	173	-	-	-	-	-	-	-	-
Stage 1	433	442	-	521	517	-	-	-	-	-	-	-	-
Stage 2	388	512	-	419	442	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB			
HCM Control Delay, s	36.8			21.2			0.1						

HCM Control Delay, s	36.8	21.2
HCM LOS	E	С

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	1002	-	-	151	356	+	-	-	
HCM Lane V/C Ratio	0.004	-	-	0.255	0.38	-	-	-	
HCM Control Delay (s)	8.6	-	-	36.8	21.2	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	1	1.7	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 3	00s -	+: Comp	outation	Not De	efined	*: All major volume in platoon

Int Delay, s/veh	0						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		- 11	4î		
Traffic Vol, veh/h	0	0	0	608	594	4	
Future Vol, veh/h	0	0	0	608	594	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	661	646	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	-	648	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.23	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	-	-	-	-	
Pot Cap-1 Maneuver	0	469	0	-	-	-	
Stage 1	0	-	0	-	-	-	
Stage 2	0	-	0	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	469	-	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Vinor Lane/Major Mvmt	NBT EBLn	1 SE	ST S	SBR
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s)	-	0	-	-
HCM Lane LOS	- ,	A	-	-
HCM 95th %tile Q(veh)	-	-	-	-

Int Delay, s/veh	1.5						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	4î		¥		
Traffic Vol, veh/h	0	19	19	2	8	0	
Future Vol, veh/h	0	19	19	2	8	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	21	2	9	0	

Major/Minor	Major1			Ν	lajor2		Minor2		
Conflicting Flow All	23	0			-	0	43	22	
Stage 1	-	-			-	-	22	-	
Stage 2	-	-			-	-	21	-	
Critical Hdwy	4.12	-			-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-			-	-	5.42	-	
Critical Hdwy Stg 2	-	-			-	-	5.42	-	
Follow-up Hdwy	2.218	-			-	-	3.518	3.318	
Pot Cap-1 Maneuver	1592	-			-	-	968	1055	
Stage 1	-	-			-	-	1001	-	
Stage 2	-	-			-	-	1002	-	
Platoon blocked, %		-			-	-			
Mov Cap-1 Maneuver	1592	-			-	-	968	1055	
Mov Cap-2 Maneuver	-	-			-	-	968	-	
Stage 1	-	-			-	-	1001	-	
Stage 2	-	-			-	-	1002	-	
Approach	EB				WB		SB		
HCM Control Delay, s	0				0		8.8		
HCM LOS							А		
Minor Lane/Major Mvmt	EBL	EBT	WBT WE	3R SBLn1					
Capacity (veh/h)	1592	-	-	- 968					
HCM Lane V/C Ratio	-	-	-	- 0.009					

HCM Lane V/C Ratio	-	-	-	- 0.009	
HCM Control Delay (s)	0	-	-	- 8.8	
HCM Lane LOS	А	-	-	- A	
HCM 95th %tile Q(veh)	0	-	-	- 0	

Kimley **»Horn**

Appendix B Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions

	≯	-	\mathbf{r}	F	4	+	•	1	Ť	1	1	Ŧ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	<u></u>	1		٦	^	1	ኘኘ	A⊅		٦	•
Traffic Volume (veh/h)	192	266	219	15	46	974	123	281	161	7	141	274
Future Volume (veh/h)	192	266	219	15	46	974	123	281	161	7	141	274
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1810	1776	1845		1900	1881	1863	1845	1863	1900	1845	1881
Adj Flow Rate, veh/h	209	289	238		50	1059	134	305	175	8	153	298
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	7	3		0	1	2	3	2	2	3	1
Cap, veh/h	191	1147	533		64	1136	503	385	1070	49	187	571
Arrive On Green	0.06	0.34	0.34		0.04	0.32	0.32	0.11	0.31	0.31	0.11	0.30
Sat Flow, veh/h	3343	3374	1568		1810	3574	1583	3408	3448	157	1757	1881
Grp Volume(v), veh/h	209	289	238		50	1059	134	305	89	94	153	298
Grp Sat Flow(s), veh/h/ln	1672	1687	1568		1810	1787	1583	1704	1770	1835	1757	1881
Q Serve(g_s), s	5.0	5.4	10.3		2.4	25.1	5.5	7.6	3.2	3.2	7.4	11.5
Cycle Q Clear(g_c), s	5.0	5.4	10.3		2.4	25.1	5.5	7.6	3.2	3.2	7.4	11.5
Prop In Lane	1.00		1.00		1.00		1.00	1.00		0.09	1.00	-
Lane Grp Cap(c), veh/h	191	1147	533		64	1136	503	385	549	569	187	571
V/C Ratio(X)	1.09	0.25	0.45		0.78	0.93	0.27	0.79	0.16	0.16	0.82	0.52
Avail Cap(c_a), veh/h	191	1147	533		104	1158	513	468	557	578	221	571
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.2	20.8	22.4		41.8	28.9	22.2	37.7	21.9	21.9	38.2	25.2
Incr Delay (d2), s/veh	91.8	0.1	0.6		18.3	13.1	0.3	7.5	0.1	0.1	18.5	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.7	2.5	4.6		1.5	14.4	2.4	4.0	1.6	1.7	4.6	6.1
LnGrp Delay(d),s/veh	133.0	20.9	23.0		60.1	42.0	22.5	45.2	22.0	22.0	56.7	26.0
LnGrp LOS	F	С	С		E	D	С	D	С	С	E	С
Approach Vol, veh/h		736				1243			488			912
Approach Delay, s/veh		53.4				40.6			36.5			47.6
Approach LOS		D				D			D			D
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	35.4	13.9	31.0	9.0	33.5	13.3	31.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+11), s	4.4	12.3	9.6	26.6	7.0	20.3	9.4	5.2				
Green Ext Time (p_c), s	0.0	8.7	0.3	0.0	0.0	0.7	0.1	4.8				
Intersection Summary												
HCM 2010 Ctrl Delay			44.7									
HCM 2010 LOS			D									
Notes												
1000												

Kimley-Horn HCM 2010 Signalized Intersection Summary

	~
Movement	SBR
LaneConfigurations	7
Traffic Volume (veh/h)	424
Future Volume (veh/h)	424
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1881
Adj Flow Rate, veh/h	461
Adj No. of Lanes	1
Peak Hour Factor	0.92
Percent Heavy Veh, %	1
Cap, veh/h	485
Arrive On Green	0.30
Sat Flow, veh/h	1599
Grp Volume(v), veh/h	461
Grp Sat Flow(s), veh/h/ln	1599
Q Serve(g_s), s	24.6
Cycle Q Clear(g_c), s	24.6
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	485
V/C Ratio(X)	0.95
Avail Cap(c_a), veh/h	485
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	29.8
Incr Delay (d2), s/veh	28.7
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	14.7
LnGrp Delay(d),s/veh	58.4
LnGrp LOS	E
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	1	1	1	Ļ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	209	289	238	66	1059	134	305	183	153	298	461	
v/c Ratio	1.06	0.24	0.34	0.58	0.91	0.22	0.68	0.19	0.71	0.60	0.87	
Control Delay	121.8	22.3	4.7	63.5	41.3	5.3	44.4	23.1	56.9	32.7	38.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	121.8	22.3	4.7	63.5	41.3	5.3	44.4	23.1	56.9	32.7	38.9	
Queue Length 50th (ft)	~71	64	0	38	306	0	86	38	85	141	170	
Queue Length 95th (ft)	#141	97	51	#100	#437	39	129	64	#176	223	#333	
Internal Link Dist (ft)		586			551			197		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	198	1185	705	113	1204	622	485	1154	229	593	602	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.06	0.24	0.34	0.58	0.88	0.22	0.63	0.16	0.67	0.50	0.77	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Intersection												
Int Delay, s/veh	1.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 >			- 44		ሻ	↑		ሻ	↑	1
Traffic Vol, veh/h	25	0	1	0	0	54	3	370	12	38	484	13
Future Vol, veh/h	25	0	1	0	0	54	3	370	12	38	484	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	ŧ -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	0	1	0	0	59	3	402	13	41	526	14

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1054	1031	526	1024	1024	409	526	0	0	415	0	0
Stage 1	609	609	-	415	415	-	-	-	-	-	-	-
Stage 2	445	422	-	609	609	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	204	233	552	214	235	642	1041	-	-	1144	-	-
Stage 1	482	485	-	615	592	-	-	-	-	-	-	-
Stage 2	592	588	-	482	485	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	180	224	552	207	226	642	1041	-	-	1144	-	-
Mov Cap-2 Maneuver	180	224	-	207	226	-	-	-	-	-	-	-
Stage 1	481	468	-	613	590	-	-	-	-	-	-	-
Stage 2	536	586	-	464	468	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	27.9			11.2			0.1			0.6		
HCM LOS	D			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1041	-	-	185	642	1144	-	-
HCM Lane V/C Ratio	0.003	-	-	0.153	0.091	0.036	-	-
HCM Control Delay (s)	8.5	-	-	27.9	11.2	8.3	-	-
HCM Lane LOS	А	-	-	D	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.5	0.3	0.1	-	-

Int Delay, s/veh	0						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		- 11	¢		
Traffic Vol, veh/h	0	0	0	449	535	4	
Future Vol, veh/h	0	0	0	449	535	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	488	582	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	-	584	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.23	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	-	-	-	-	
Pot Cap-1 Maneuver	0	511	0	-	-	-	
Stage 1	0	-	0	-	-	-	
Stage 2	0	-	0	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	511	-	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT EBLn	1 SBT	SBR
Capacity (veh/h)	-		-
HCM Lane V/C Ratio	-		-
HCM Control Delay (s)	- (- C	-
HCM Lane LOS	- /	۰ <i>۲</i>	-
HCM 95th %tile Q(veh)	-		-

Intersection							
Int Delay, s/veh 0	.6						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	¢		Y		
Traffic Vol, veh/h	0	23	14	2	3	0	
Future Vol, veh/h	0	23	14	2	3	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	25	15	2	3	0	

Major/Minor	Major1			N	lajor2		Minor2	
Conflicting Flow All	17	0			-	0	41	16
Stage 1	-	-			-	-	16	-
Stage 2	-	-			-	-	25	-
Critical Hdwy	4.12	-			-	-	6.42	6.22
Critical Hdwy Stg 1	-	-			-	-	5.42	-
Critical Hdwy Stg 2	-	-			-	-	5.42	-
Follow-up Hdwy	2.218	-			-	-	3.518	3.318
Pot Cap-1 Maneuver	1600	-			-	-	970	1063
Stage 1	-	-			-	-	1007	-
Stage 2	-	-			-	-	998	-
Platoon blocked, %		-			-	-		
Mov Cap-1 Maneuver	1600	-			-	-	970	1063
Mov Cap-2 Maneuver	-	-			-	-	970	-
Stage 1	-	-			-	-	1007	-
Stage 2	-	-			-	-	998	-
Approach	EB				WB		SB	
HCM Control Delay, s	0				0		8.7	
HCM LOS	0				0		0.7 A	
							A	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1				
Capacity (veh/h)	1600	-	-	- 970				
HCM Lane V/C Ratio	-	-	-	- 0.003				
HCM Control Delay (s)	0	-	-	- 8.7				
HCM Lane LOS	А	-	-	- A				

0

0

HCM 95th %tile Q(veh)

	≯	-	\mathbf{r}	F	4	+	×	1	Ť	1	1	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	<u></u>	1		۲	<u></u>	1	ኘኘ	A		7	•
Traffic Volume (veh/h)	503	964	349	65	87	618	111	381	292	33	134	217
Future Volume (veh/h)	503	964	349	65	87	618	111	381	292	33	134	217
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1810	1776	1845		1900	1881	1863	1845	1863	1900	1845	1881
Adj Flow Rate, veh/h	547	1048	379		95	672	121	414	317	36	146	236
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	7	3		0	1	2	3	2	2	3	1
Cap, veh/h	443	1245	578		109	1060	470	487	819	92	169	393
Arrive On Green	0.13	0.37	0.37		0.06	0.30	0.30	0.14	0.26	0.26	0.10	0.21
Sat Flow, veh/h	3343	3374	1568		1810	3574	1583	3408	3207	361	1757	1881
Grp Volume(v), veh/h	547	1048	379		95	672	121	414	174	179	146	236
Grp Sat Flow(s), veh/h/ln	1672	1687	1568		1810	1787	1583	1704	1770	1799	1757	1881
Q Serve(q_s), s	11.0	23.6	16.7		4.3	13.5	4.8	9.8	6.7	6.8	6.8	9.4
Cycle Q Clear(g_c), s	11.0	23.6	16.7		4.3	13.5	4.8	9.8	6.7	6.8	6.8	9.4
Prop In Lane	1.00	23.0	1.00		1.00	15.5	1.00	1.00	0.7	0.20	1.00	7.4
Lane Grp Cap(c), veh/h	443	1245	578		1.00	1060	470	487	452	460	1.00	393
V/C Ratio(X)	1.24	0.84	0.66		0.87	0.63	0.26	0.85	0.38	0.39	0.86	0.60
Avail Cap(c_a), veh/h	443	1292	600		109	1110	492	492	575	585	169	521
HCM Platoon Ratio	1.00	1292	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	21.8			25.3	22.2	34.7				1.00
Uniform Delay (d), s/veh	36.0	24.0			38.7				25.5	25.6	37.0	29.7
Incr Delay (d2), s/veh	124.2	5.1	2.5		48.8	1.1	0.3	13.1	0.5	0.5	33.9	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	12.7	11.8	7.6		3.6	6.8	2.1	5.5	3.4	3.5	4.9	5.1
LnGrp Delay(d),s/veh	160.2	29.1	24.3		87.5	26.4	22.5	47.9	26.1	26.1	70.9	31.2
LnGrp LOS	F	С	С		F	С	С	D	С	С	E	C
Approach Vol, veh/h		1974				888			767			636
Approach Delay, s/veh		64.5				32.4			37.8			42.4
Approach LOS		E				С			D			D
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.0	36.3	15.9	21.9	15.0	30.3	12.0	25.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	6.3	25.6	11.8	14.4	13.0	15.5	8.8	8.8				
Green Ext Time (p_c), s	0.0	5.0	0.0	2.9	0.0	7.8	0.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			49.7									
HCM 2010 LOS			D									
			_									
Notes												

Kimley-Horn HCM 2010 Signalized Intersection Summary

	~
Movement	SBR
Traffic Volume (veh/h)	234
Future Volume (veh/h)	234
Number	234 14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1881
Adj Flow Rate, veh/h	254
Adj No. of Lanes	254
Peak Hour Factor	0.92
Percent Heavy Veh, %	0.92
Cap, veh/h	334
Arrive On Green	0.21
Sat Flow, veh/h	1599
Grp Volume(v), veh/h	254
Grp Sat Flow(s), veh/h/ln	1599
Q Serve(g_s), s	12.4
Cycle Q Clear(g_c), s	12.4
Prop In Lane	12.4
Lane Grp Cap(c), veh/h	334
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	443
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.9
Incr Delay (d2), s/veh	5.4
Initial Q Delay(d3), s/veh	0.0
%ile BackOfQ(50%),veh/ln	6.0
LnGrp Delay(d),s/veh	36.3
LINGIP Delay(d), siven	30.3 D
Approach Vol, veh/h	U
Approach Delay, s/veh	
Approach LOS	
Timer	

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{r}	•	←	•	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	547	1048	379	166	672	121	414	353	146	236	254	
v/c Ratio	1.21	0.84	0.46	1.77	0.64	0.21	0.82	0.41	0.84	0.64	0.52	
Control Delay	146.1	31.8	4.4	415.5	28.7	2.7	50.2	26.2	78.0	38.9	10.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	146.1	31.8	4.4	415.5	28.7	2.7	50.2	26.2	78.0	38.9	10.3	
Queue Length 50th (ft)	~186	253	0	~133	156	0	110	78	77	114	15	
Queue Length 95th (ft)	#312	#409	58	#272	236	20	#207	115	#200	186	76	
Internal Link Dist (ft)		586			551			197		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	453	1327	847	94	1141	616	504	1174	173	535	612	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.21	0.79	0.45	1.77	0.59	0.20	0.82	0.30	0.84	0.44	0.42	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Int Delay, s/veh	3.1													
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations			\$			÷		ľ	1			24	1	1
Traffic Vol, veh/h		20	2	11	18	1	91	6	588	15	7	57	567	18
Future Vol, veh/h		20	2	11	18	1	91	6	588	15	7	57	567	18
Conflicting Peds, #/hr		0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized		-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length		-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	ŧ	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %		-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor		92	92	92	92	92	92	92	92	92	88	92	92	92
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		22	2	12	20	1	99	7	639	16	8	62	616	20

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1450	1424	616	1407	1416	647	616	0	0	655	655	0	0
Stage 1	740	756	-	660	660	-	-	-	-	-	-	-	-
Stage 2	710	668	-	747	756	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	136	491	117	137	471	964	-	-	-	932	-	-
Stage 1	409	416	-	452	460	-	-	-	-	-	-	-	-
Stage 2	424	456	-	405	416	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	85	135	491	112	136	471	964	-	-	~ -9	~ -9	-	-
Mov Cap-2 Maneuver	85	135	-	112	136	-	-	-	-	-	-	-	-
Stage 1	406	416	-	449	457	-	-	-	-	-	-	-	-
Stage 2	332	453	-	393	416	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB			
HCM Control Delay, s	46.8			24.3			0.1						
HCM LOS	E			С									

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	NBLn1	SBL	SBT	SBR	
Capacity (veh/h)	964	-	-	121	304	+	-	-	
HCM Lane V/C Ratio	0.007	-	-	0.296	0.393	-	-	-	
HCM Control Delay (s)	8.8	-	-	46.8	24.3	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	1.1	1.8	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	elay exc	eeds 3	00s	+: Com	outation	Not De	efined	*: All major volume in platoon

Kimley-Horn HCM 2010 TWSC

Int Delay, s/veh	0						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		^	eî.		
Traffic Vol, veh/h	0	0	0	706	649	4	
Future Vol, veh/h	0	0	0	706	649	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	767	705	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	-	708	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.23	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	-	-	-	-	
Pot Cap-1 Maneuver	0	434	0	-	-	-	
Stage 1	0	-	0	-	-	-	
Stage 2	0	-	0	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	434	-	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT EB	Ln1	SBT	SBR
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s)	-	0	-	-
HCM Lane LOS	-	А	-	-
HCM 95th %tile Q(veh)	-	-	-	-

Intersection		
Int Delay, s/veh	1.2	

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	4î		Y		
Traffic Vol, veh/h	0	25	23	2	8	0	
Future Vol, veh/h	0	25	23	2	8	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	27	25	2	9	0	

Major/Minor	Major1			Major2		Minor2	
Conflicting Flow All	27	0		-	0	53	26
Stage 1	-	-		-	-	26	-
Stage 2	-	-		-	-	27	-
Critical Hdwy	4.12	-		-	-	6.42	6.22
Critical Hdwy Stg 1	-	-		-	-	5.42	-
Critical Hdwy Stg 2	-	-		-	-	5.42	-
Follow-up Hdwy	2.218	-		-	-	3.518	3.318
Pot Cap-1 Maneuver	1587	-		-	-	955	1050
Stage 1	-	-		-	-	997	-
Stage 2	-	-		-	-	996	-
Platoon blocked, %		-		-	-		
Mov Cap-1 Maneuver	1587	-		-	-	955	1050
Mov Cap-2 Maneuver	-	-		-	-	955	-
Stage 1	-	-		-	-	997	-
Stage 2	-	-		-	-	996	-
Approach	EB			WB		SB	
HCM Control Delay, s	0			0		8.8	
HCM LOS	0			- U		A	
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1				
Capacity (veh/h)	1587	-	955				
HCM Lane V/C Ratio	-	-	0.009				
HCM Control Delay (s)	0	-	8.8				
	^						

А

0

-

_

А

0

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Kimley **»Horn**

Appendix C Analysis Worksheets for Traffic Signal Warrant Analyses

Default Scenario Mon Jan 9, 2017 15:53:17 Page 1-1

		Scenario Report
Scenario:	Default	Scenario
Commond	Defeult	Commond
Command:	Default	
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to K-H, PHOENIX, AZ
Default Scenario Mon Jan 9, 2	2017 15:53:17	Page 2-1				
Signal Warrant	Summary Report					
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]				
<pre># 2 Francisco Drive @ Cambria Way # 4 Green Valley Road @ Project Access # 5 Cambria Way @ Project Access Drive</pre>		;;; / ;;; ;;; / ;;; ;;; / ;;;				

Default Scenario Mon Jan 9, 2017 15:53:17 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Initial Vol:3 4201437 540102101053ApproachDel:xxxxxxxxxxxx36.111.7 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=22] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1099] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=53] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1099] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Default Scenario Mon Jan 9, 2017 15:53:17 Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1
 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1

 Initial Vol:
 3 420 14
 37 540 10
 21 0 1
 0 0 53
 Major Street Volume: 1024 Minor Approach Volume: 53 Minor Approach Volume: Minor Approach Volume Threshold: 277 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	rio			Mon	Jan	9,2	017	15:	53:I	L7					P	age	3-	4
Peak Hour Delay Signal Warrant Report																		
Intersection #4 Green Valley Road @ Project Access Driveway																		

				-														
Approach:	Nor	th Bo	bund		Sou	th B	oun	d		Eas	t Bc	unc	1		Wes	tВ	oun	d
Movement:	L -	Т	- 1	R	L -	Т	-	R	L	-	Т	-	R	L	-	Т	-	R
				-														
Control:	Unco	ontro	olle	d	Unc	ontr	011	ed		Sto	p Si	gn			Sto	рS	ign	
Lanes:	0 0	2	0	0	0 0	0	1	0	0	0	0	0	1	0	0	0	0	0
Initial Vol:	0	494		0	0	587		4		0	0		0		0	0		0
ApproachDel:	XX	xxxx			XX	xxxx				xxx	xxx				xxx	xxx		
				-														

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:53:17 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Initial Vol:
 0
 494
 0
 0
 587
 4
 0
 0
 0
 0
 0
 0

 Major Street Volume: 1085 Minor Approach Volume: 0 Minor Approach Volume: 0 Minor Approach Volume Threshold: 257 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:53:17 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 3
 0
 0
 1
 2

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx

 2 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=3] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=35] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:53:17 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 3
 0
 0
 19
 0
 0
 11
 2

 Major Street Volume:32Minor Approach Volume:3 Minor Approach Volume Threshold: 1137 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:52:10 Page 1-1

	Scenario Report	
Scenario:	Default Scenario	
Command:	Default Command	
Volume:	Default Volume	
Geometry:	Default Geometry	
Impact Fee:	Default Impact Fee	
Trip Generation:	Default Trip Generation	
Trip Distribution:	Default Trip Distribution	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Default Scenario	Mon Jan 9, 2017 15:52:10	Page 2-1
Si		
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Francisco Drive @ Camb # 4 Green Valley Road @ Pr</pre>	oject Access No / No	;;; / ;;; ;; / ;;;
# 5 Cambria Way @ Project	Access Drivew No / No	<pre></pre>

Default Scenario Mon Jan 9, 2017 15:52:10 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 0 0 0 0 0
 Initial Vol:4 5011654 520161728 20186ApproachDel:xxxxxxxxxxxx38.321.7 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=27] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.6] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=107] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Default Scenario Mon Jan 9, 2017 15:52:10 Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R 1111 107 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 249 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	rio		1	Mon 3	Jan	9,2	017	15:	52:2	LO					Pa	age	3-	4
Peak Hour Delay Signal Warrant Report																		
													***	* * *	***	* * * *	* * *	* * * *
Intersection	#4 Gr	een V	alley	y Roa	ad @	Pro	jec	t Ac	ces	s Dr	ivew	ay						
* * * * * * * * * * * * *	*****	* * * * *	* * * * *	* * * * *	* * * *	* * * *	* * *	* * * *	* * * :	* * * *	* * * *	* * * *	* * *	* * *	* * * :	* * * *	* * *	* * * *
Base Volume A	Base Volume Alternative: Peak Hour Warrant NOT Met																	
				-				1					- -					
Approach:	Nor	th Bc	und	11	Sou	th B	oun	d '	1	Eas	t Bo	und	11	1	West	t Bo	oun	d '
Movement:	L -	Т	– R	I	с –	Т	_	R	L	_	Т	– R	2	L	_	Т	_	R
				-														
Control:	Unco	ontro	lled		Unc	ontro	011	ed		Sto	p Si	gn			Stop	S S	ign	
Lanes:	0 0	2	0 0	(0 C	0	1	0	0	0	0	0 1	-	0	0	0	0	0
Initial Vol:	0	608	(C	0	594		4		0	0		0		0	0		0
ApproachDel:	XX	xxxx			xx	xxxx				xxx	xxx			:	xxx	xxx		
				-														

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:52:10 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 2
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 < Major Street Volume: 1206 Minor Approach Volume: 0 Minor Approach Volume Threshold: 220 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:52:11 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 8
 0
 0
 19
 0
 19
 2

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx
 19
 10
 19
 10

 2 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=8] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=48] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:52:11 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 8
 0
 0
 19
 0
 19
 2

 Major Street Volume:40Minor Approach Volume:8 Minor Approach Volume Threshold: 1078 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:58:16 Page 1-1

- 1		

Scenario:	Default	Scenario Report Scenario
Command:	Default	Command
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Default Scenario Mon Jan 9,	2017 15:58:16	Page 2-1
Signal Warra	nt Summary Report	
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Francisco Drive @ Cambria Way # 4 Green Valley Road @ Project Acce # 5 Cambria Way @ Project Access Dri</pre>		<pre>555 \ 555 555 \ 555 555 \ 555</pre>

Default Scenario Mon Jan 9, 2017 15:58:16 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 < Initial Vol:3 3701238 4841325010054ApproachDel:xxxxxxxxxxxx27.711.1 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=26] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1000] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=54] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1000] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Default Scenario Mon Jan 9, 2017 15:58:16 Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1

 Initial Vol:
 3 370 12 38 484 13 25 0 1 0 0 54

 Major Street Volume: 920 Minor Approach Volume: 54 Minor Approach Volume: Minor Approach Volume Threshold: 314 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	rio		NN	lon J	Jan	9,2	017	15:	58:I	16					P	age	3-	4
Peak Hour Delay Signal Warrant Report																		
													* * * *	* * *	* * *	* * *	* * *	* * * *
Intersection	Intersection #4 Green Valley Road @ Project Access Driveway																	
*******	* * * * *	* * * * *	****	****	* * * *	* * * *	* * *	* * * *	* * * :	* * * *	* * * *	* * * :	* * * *	* * *	* * *	* * *	* * *	* * * *
Base Volume A	Base Volume Alternative: Peak Hour Warrant NOT Met																	
				-														
Approach:	Nor	th Bo	ound		Sou	th B	oun	d '		Eas	t Bo	und			Wes	est Bound		
Movement:	L –	Т	- R	I	<u> </u>	Т	-	R	L	-	Т	- I	R	L	-	Т	-	R
				-														
Control:	Unc	ontro	lled		Unc	ontr	011	ed '		Sto	p Si	gn			Sto	p Si	ign	
Lanes:	0 0	2	0 0	(0 C	0	1	0	0	0	0	0 2	1	0	0	0	0	0
Initial Vol:	0	449	()	0	535		4		0	0		0		0	0		0
ApproachDel:	XX	xxxx			XX	xxxx				xxx	xxx				XXX	xxx		
				-														

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:58:16 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 2
 0
 0
 0
 1
 0
 0
 0
 0

 Initial Vol:
 0
 449
 0
 0
 535
 4
 0
 0
 0
 0
 0
 0

 Major Street Volume: 988 Minor Approach Volume: 0 Minor Approach Volume Threshold: 289 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:58:16 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 3
 0
 0
 23
 0
 14
 2

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx
 14
 14

 2 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=3] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=42] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 15:58:16 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 3
 0
 0
 23
 0
 0
 14
 2

 Major Street Volume:39Minor Approach Volume:3 Minor Approach Volume Threshold: 1085 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 16:00:50 Page 1-1

	Scenario Report	
Scenario:	Default Scenario	
Command:	Default Command	
Volume:	Default Volume	
Geometry:	Default Geometry	
Impact Fee:	Default Impact Fee	
Trip Generation:	Default Trip Generation	
Trip Distribution:	Default Trip Distribution	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Default Scenario	Mon Jan 9, 201	7 16:00:5	0	Page 2-1
	Signal Warrant Su	ummary Rej	port	
Intersection		Base Me	et	Future Met
		[Del / Y	Vol]	[Del / Vol]
# 2 Francisco Drive @ (Cambria Way	No / I	No	??? / ???
# 4 Green Valley Road @	Project Access	No / I	No	??? / ???
# 5 Cambria Way @ Proje	ect Access Drivew	No / I	No	??? / ???

Default Scenario Mon Jan 9, 2017 16:00:50 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 Initial Vol:65881557567182021118191ApproachDel:xxxxxxxxxxxx49.025.1 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.4] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=33] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.8] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=110] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Mon Jan 9, 2017 16:00:50 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 6 588 15 57 567 18 20 2 11 18 1 91

 1251 110 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 208 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Mon Jan 9, 2017 16:00:50 Default Scenario Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R -----||-----||------||
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 2
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <
 Initial Vol:
 0
 706
 0
 0 649
 4
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____|_____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Mon Jan 9, 2017 16:00:50 Default Scenario Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Initial Vol:
 0
 706
 0
 649
 4
 0
 0
 0
 0
 0

 Major Street Volume: 1359 Minor Approach Volume: 0 Minor Approach Volume Threshold: 179 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Mon Jan 9, 2017 16:00:50 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 8
 0
 0
 25
 0
 23
 2

 ApproachDel:
 xxxxxx
 8.8
 xxxxxx
 xxxxxx
 xxxxxx

 2 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=8] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=58] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Mon Jan 9, 2017 16:00:50 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 8
 0
 0
 25
 0
 0
 23
 2

 Major Street Volume:50Minor Approach Volume:8 Minor Approach Volume Threshold: 1018 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Traffic Impact Analysis

El Dorado Hills Memory Care Center (WO#22) El Dorado Hills, California

June 5, 2015

Prepared for:

Sierra Capital & Investment, Inc.

Prepared by: Kimley »Horn

2720 Gateway Oaks Drive, Suite 310 Sacramento, California 95833

Phone: (916) 858-5800

EXECUTIVE SUMMARY

This report documents the results of a traffic impact analysis completed for the El Dorado Hills Memory Care Center project proposed to be located in the southwest corner of the Green Valley Road intersection with Francisco Drive in El Dorado Hills, California (the "proposed project" or "project"). The purpose of this impact analysis is to identify potential environmental impacts to transportation facilities as required by the California Environmental Quality Act (CEQA). This study was performed in accordance with the El Dorado County Community Development Agency's *Transportation Impact Study Guidelines*, and the scope of work provided by a representative of the County.

The 6.85-acre project site is proposed to be developed with a 40,000-square foot memory care center. Access to the site will be provided via one full access driveway along Cambria Way, and one right-in/right-out driveway along Green Valley Road. The following intersections are included in this evaluation:

- 1. Green Valley Road at Francisco Drive
- 2. Francisco Drive at Cambria Way/Embarcadero Drive
- 3. Francisco Drive at El Dorado Hills Boulevard
- 4. Green Valley Road at Project Site Access Driveway (Project Only)
- 5. Cambria Way at Project Site Access Driveway (Project Only)

Based on the County's requirements, this LOS analysis was conducted for the above facilities for the following scenarios:

- A. Existing (2015) Conditions
- B. Existing (2015) plus Proposed Project Conditions
- C. Near-Term (2025) Conditions
- D. Near-Term (2025) plus Proposed Project Conditions

Significant findings of this study include:

- The proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour.
- The County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.
- As defined by the County, the addition of the proposed project to the Existing (2015) and Near-Term (2025) scenarios does not worsen conditions at the study intersections. As a result, the project's potential environmental impacts to transportation facilities are considered to be *less than significant*.

TABLE OF CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
PROJECT AREA ROADWAYS	1
ASSESSMENT OF PROPOSED PROJECT Proposed Project Trip Generation Proposed Project Trip Distribution	5
TRAFFIC IMPACT ANALYSIS METHODOLOGY Consistency with General Plan Land Use Designation	
EXISTING (2015) CONDITIONS	9
EXISTING (2015) PLUS PROPOSED PROJECT CONDITIONS	11
NEAR-TERM (2025) CONDITIONS	13
NEAR-TERM (2025) PLUS PROPOSED PROJECT CONDITIONS	13
IMPACTS AND MITIGATION Standards of Significance Impacts and Mitigation	
OTHER CONSIDERATIONS Peak-Hour Traffic Signal Warrant Evaluation Sight Distance Evaluation Intersection Queuing Evaluation Site Plan, Access, and On-site Circulation Evaluation Preliminary Traffic Safety Evaluation Bicycle and Pedestrian Facilities Evaluation	
CONCLUSIONS	
APPENDICES Traffic Count Data Sheets Analysis Worksheets for Existing (2015) Conditions Analysis Worksheets for Existing (2015) plus Proposed Project Conditions	Appendix B
Analysis Worksheets for Existing (2015) plus Proposed Project Conditions Near-Term (2025) Traffic Volumes Analysis Worksheets for Near-Term (2025) Conditions	Appendix D
Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions Traffic Signal Warrant Worksheets	• •

LIST OF TABLES

Table 1 – Proposed Project Trip Generation	5
Table 2 – Intersection Level of Service Criteria	8
Table 3 – Existing (2015) Intersection Levels of Service	9
Table 4 – Existing (2015) and Existing (2015) Plus Proposed Project Intersection Levels of Service	11
Table 5 – Near-Term (2025) Intersection Levels of Service	13
Table 6 – Near-Term (2025) and Near-Term (2025) plus	
Proposed Project Intersection Levels of Service	16
Table 7 – Traffic Signal Warrant Analysis Results	17
Table 8 – Intersection Queuing Evaluation Results for Select Locations	19
Table 9 – Project Area Sites Selected for Investigation	20

LIST OF FIGURES

Figure 1 – Project Vicinity Map	2
Figure 2 – Proposed Project Site Plan	3
Figure 3 – Study Intersections, Traffic Control, and Lane Geometries	4
Figure 4 – Proposed Project Trip Distribution	6
Figure 5 – Proposed Project Trip Assignment	7
Figure 6 – Existing (2015) Peak-Hour Traffic Volumes	10
Figure 7 – Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes	12
Figure 8 – Near-Term (2025) Peak-Hour Traffic Volumes	14
Figure 9 – Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes	15

INTRODUCTION

This report documents the results of a traffic impact analysis completed for the El Dorado Hills Memory Care Center project proposed to be located in the southwest corner of the Green Valley Road intersection with Francisco Drive in El Dorado Hills, California (the "proposed project" or "project"). The purpose of this impact analysis is to identify potential environmental impacts to transportation facilities as required by the California Environmental Quality Act (CEQA). This study was performed in accordance with the El Dorado County Community Development Agency's *Transportation Impact Study Guidelines*, and the scope of work provided by a representative of the County¹.

The remaining sections of this report document the proposed project, analysis methodologies, impacts and mitigation, and general study conclusions.

PROJECT DESCRIPTION

The 6.85-acre project site is proposed to be developed with a 40,000-square foot memory care center. Access to the site will be provided via one full access driveway along Cambria Way, and one right-in/rightout driveway along Green Valley Road. The project location is shown in **Figure 1**, and the proposed project site plan is shown in **Figure 2**. The following intersections are included in this evaluation:

- 1. Green Valley Road at Francisco Drive
- 2. Francisco Drive at Cambria Way/Embarcadero Drive
- 3. Francisco Drive at El Dorado Hills Boulevard
- 4. Green Valley Road at Project Site Access Driveway (Project Only)
- 5. Cambria Way at Project Site Access Driveway (Project Only)

Figure 3 illustrates the study facilities, existing traffic control, and existing lane configurations.

PROJECT AREA ROADWAYS

The following are descriptions of the primary roadways in the vicinity of the project.

US Route 50 (US-50) is an east-west freeway located south of the project site. Generally, US-50 serves all of El Dorado County's major population centers and provides connections to Sacramento County to the west and the State of Nevada to the east. Primary access to the project site from US-50 is provided at the El Dorado Hills Boulevard/Latrobe Road interchange. Within the general project area, US-50 currently serves approximately 90,000 vehicles per day² (vpd) with three travel lanes in each direction, west of El Dorado Hills Boulevard/Latrobe Road.

Green Valley Road is an east-west arterial roadway that connects Placerville with western portions of El Dorado County and eastern Sacramento County, south of Folsom Lake. Through the project area, Green Valley Road provides two travel lanes in each direction and serves approximately 25,600 vehicles per day³.

¹ Memorandum from Chirag Safi and Sara Muse, Kittelson & Associates, Inc., to Natalie Porter, El Dorado County, February 27, 2015.

² Caltrans Traffic and Vehicle Data Systems Unit, <u>http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2013all/</u>

³ El Dorado County Department of Transportation, 2013.

Kimley **»Horn**

Figure 1 16-0582 2H 73 of 427

M115-002-001/ENGINEER/EXHIBITS/15-002-SITE PLAN.dwg, 2/6/2015 3:37:51 PM, du

Figure 2 Proposed Project Site Plan 16-0582 2H 74 of 427

Kimley **»Horn**

Figure 3 Study Intersections, Traffic Control, and Lane Geometries 16-0582 2H 75 of 427 **Francisco Drive** is a north-south collector roadway that provides access to residential areas north of Green Valley Road and connects with El Dorado Hills Boulevard to the south. Francisco Drive has one travel lane in each direction and serves as a primary southern connection between El Dorado Hills Boulevard and Green Valley Road for vehicles destined for, and coming from points to the west.

Cambria Way and **Embarcadero Drive** are two-lane local roadways that provide access to residential areas surrounding Francisco Drive. The proposed project has direct access to Cambria Way.

ASSESSMENT OF PROPOSED PROJECT

Proposed Project Trip Generation

Memory care living facilities provide a living environment with intensive, long-term medical care for seniors with serious health and dementia conditions in a fully-staffed and monitored facility. Due to the nature of these facilities, residents are comprised of older adults who typically do not drive; thus, the site trip generation is anticipated to be low and predominantly composed of employee and visitor trips.

Trip generation for development projects is typically calculated based on rates contained in the Institute of Transportation Engineer's (ITE) publication, *Trip Generation Manual*. The *Trip Generation Manual* is a standard reference used by jurisdictions throughout the country for the estimation of trip generation potential of proposed developments. A trip is defined in the *Trip Generation Manual* as a single or one-directional vehicle movement with either the origin or destination at the project site. In other words, a trip can be either "to" or "from" the site. In addition, a single customer visit to a site is counted as two trips (i.e., one to and one from the site).

Trip generation for the proposed project was estimated using ITE's *Trip Generation Manual*, 9th Edition based on the "Assisted Living" category (ITE Land Use 254). "Assisted Living" is understood to represent residential settings that provide assistance to mentally or physically limited persons, typically with Alzheimer's or ALS, similar to the proposed project. As noted in the *Trip Generation Manual*, employees, visitors, and delivery trucks make most of the trips to these facilities. Truck traffic was captured for some of the studies used in developing the ITE rates, and the findings indicate that truck traffic volume was very low overall, with most trips occurring in the weekday midday period. The anticipated trip generation for this project is shown in **Table 1**.

				AM	Peak-H	our			PM	Peak-He	our	
Land Use (ITE Code) Size	Size (# beds)	Daily Trips	' Total	IN		OUT		Total	IN		OUT	
	(# beus)	mps	Trips	%	Trips	%	Trips	Trips	%	Trips	%	Trips
Assisted Living (254)	64	172	9	65%	6	35%	3	14	44%	6	56%	8
Net New Exte	rnal Trips:	172	9		6		3	14		6		8
Source: <i>Trip Generation Manual, 9th Edition</i> , ITE.												

As shown in **Table 1**, the proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour. For additional reference, the maximum peak hour trip generation for the facility, which is anticipated to occur on Sunday afternoons, was estimated to be 23 peak hour trips.

Proposed Project Trip Distribution

The distribution of project traffic was based on existing traffic volumes and general knowledge of the travel patterns in western El Dorado County. The project trip distribution percentages are illustrated in **Figure 4**. The resulting AM and PM peak-hour traffic volumes attributed to the proposed project are illustrated in **Figure 5**.

Kimley »Horn

Figure 4 Proposed Project Trip Distribution 16-0582 2H 77 of 427

Kimley»Horn

Figure 5 Proposed Project Trip Assignment 16-0582 2H 78 of 427

TRAFFIC IMPACT ANALYSIS METHODOLOGY

Analysis of transportation facility significant environmental impacts is based on the concept of Level of Service (LOS). The LOS of a facility is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. Levels of Service for this study were determined using methods defined in the *Highway Capacity Manual, 2010* (HCM) and appropriate traffic analysis software.

The HCM includes procedures for analyzing side-street stop controlled (SSSC), all-way stop controlled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole. **Table 2** presents intersection LOS definitions as defined in the HCM.

Level of	Un-Signalized	Signalized				
Service (LOS)	Average Control Delay [*] (sec/veh)	Control Delay per Vehicle (sec/veh)				
А	≤ 10	≤ 10				
В	> 10 - 15	> 10 - 20				
С	> 15 – 25	> 20 – 35				
D	> 25 – 35	> 35 – 55				
E	> 35 – 50	> 55 – 80				
F > 50 > 80						
Source: Highway Capacity Manual, 2010 * Applied to the worst lane/lane group(s) for SSSC						

Table 2 – Intersection Level of Service Criteri

Consistency with General Plan Land Use Designation

As confirmed by a representative of the County⁴, the County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.

Based on the above information and direction from County's representative, this LOS analysis was conducted for the study facilities for the following scenarios:

- A. Existing (2015) Conditions
- B. Existing (2015) plus Proposed Project Conditions
- C. Near-Term (2025) Conditions
- D. Near-Term (2025) plus Proposed Project Conditions

The following is a discussion of the analyses for these scenarios:

⁴ Email from Chirag Safi, Kittelson & Associates, Inc., April 15, 2015.

EXISTING (2015) CONDITIONS

Recent peak-hour traffic volumes for the Green Valley Road intersection with Francisco Drive intersection were obtained from a recent study completed, by others, for the Green Valley Road Corridor⁵. Two (2) new weekday AM and PM peak period intersection turning movement traffic counts were conducted in March 2015, for the Francisco Drive intersections with Cambria Way/Embarcadero Drive and El Dorado Hills Boulevard. These counts were conducted between the hours of 6:30 a.m. and 9:30 a.m. and 3:30 p.m. and 6:30 p.m. It is worth noting that a two percent heavy vehicle factor was incorporated in this, and all subsequent analysis scenarios. At the time of this study, the El Dorado Hills Boulevard intersection with Francisco Drive was under construction to implement the County's Capital Improvement Project (CIP) #71358 (Francisco Drive and a complementary southbound receiving lane onto El Dorado Hills Boulevard. These improvements are reflected in all subsequent analysis scenarios.

Existing (2015) peak-hour turn movement volumes are presented in **Figure 6**, and the traffic count data sheets are provided in **Appendix A**. **Table 3** presents the peak-hour intersection operating conditions for this analysis scenario.

			AM Peak-H	lour	PM Peak-H	lour
#	Intersection	Traffic Control	Delay (seconds)	LOS	Delay (seconds)	LOS
1	Green Valley Road @ Francisco Drive	Signal	43.7	D	29.9	С
2	Francisco Drive @ Cambria Way/Embarcadero Drive	SSSC*	36.2 (EB)	Е	34.5 (EB)	D
3	El Dorado Hills Boulevard @ Francisco Drive	AWSC	54.0	F	48.7	Е
4 Green Valley Road @ Project Site Access Driveway SSSC*						
5	5 Cambria Way @ Project Site Access Driveway SSSC*					
* Co	ntrol delay for worst minor approach (worst minor movement) for SS	SSC. Bold = Su	ubstandard per Co	ounty		

Table 3 – Existing (2015) Intersection Levels of Service

As indicated in **Table 3**, the study intersections operate from LOS C to LOS F during the AM and PM peakhours. Analysis worksheets for this scenario are provided in **Appendix B**.

⁵ *Final Corridor Analysis Report, Green Valley Road,* Kittelson & Associates, Inc., October 2014

Kimley **Whorn**

Figure 6 Existing (2015) Peak-Hour Traffic Volumes 16-0582 2H 81 of 427

EXISTING (2015) PLUS PROPOSED PROJECT CONDITIONS

Peak-hour traffic associated with the proposed project was added to the existing traffic volumes and levels of service were determined at the study intersections. **Table 4** provides a summary of the intersection analysis and **Figure 7** provides the AM and PM peak-hour traffic volumes at the study intersections for this analysis scenario.

		Analysia	Troffic	AM Peak-He	our	PM Peak-Ho	our		
#	Intersection	Analysis Scenario ⁺	Traffic Control	Delay (seconds)	LOS	Delay (seconds)	LOS		
1	Green Valley Road @	Exist.	Cignal	43.7	D	29.9	С		
L L	Francisco Drive	Exist.+PP	Signal	43.8	D	30.1	С		
2	Francisco Drive @	Exist.	SSSC*	36.2 (EB)	E	34.5 (EB)	D		
2	Cambria Way/Embarcadero Drive	Exist.+PP	3330	36.2 (EB)	Е	35.0 (EB)	Е		
2	El Dorado Hills Boulevard @	Exist.		54.0	F	48.7	Е		
3	Francisco Drive	Exist.+PP	AWSC	53.8	F 48.8	48.8	Е		
4	Green Valley Road @	Exist.		Plus Project Analysis Scenarios Only					
4	Project Site Access Driveway	Exist.+PP	SSSC*	10.4 (NB)	В	17.0 (NB)	С		
_	Cambria Way @	Exist.		Plus Project Ana	lysis Sce	enarios Only			
5	Project Site Access Driveway	Exist.+PP	SSSC*	8.7 (SB)	А	8.7 (SB)	А		
	 * Exist. = Existing (2015), Exist. + PP = Existing (2015) plus Proposed Project * Control delay for worst minor approach (worst minor movement) for SSSC. Bold = Substandard per County 								

As indicated in **Table 4**, the study intersections operate from LOS A to LOS F with the addition of project traffic during the AM and PM peak-hours. The analysis worksheets for this scenario are provided in **Appendix C**.

Kimley »Horn

Figure 7 Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes 6-0582 2H 83 of 427

NEAR-TERM (2025) CONDITIONS

Consistent with the traffic forecasting methodology specified by a representative of the County¹, traffic projections for this study are based on the County's current Travel Demand Model (TDM)⁶ and recently approved 20-year growth projections. These Near-Term, year 2025 conditions are based on a straight-line interpolation between model Existing (2010) and Cumulative (2035) forecast. Details regarding the volume forecasting and intersection turning movement development are presented in **Appendix D**.

Table 5 provides a summary of the intersection analysis and **Figure 8** provides the AM and PM trafficvolumes for this analysis scenario.

			AM Peak-Hour		PM Peak-Hour					
#	Intersection	Traffic - Control	Delay (seconds)	LOS	Delay (seconds)	LOS				
1	Green Valley Road @ Francisco Drive	Signal	44.6	D	46.3	D				
2	Francisco Drive @ Cambria Way/Embarcadero Drive	SSSC [*]	28.1 (EB)	D	43.6 (EB)	Е				
3	El Dorado Hills Boulevard @ Francisco Drive	AWSC	39.8	E	46.1	E				
4	Green Valley Road @ Project Site Access Driveway	SSSC*	Dhua Duaia							
5	Cambria Way @ Project Site Access Driveway	SSSC*	 Plus Project Analysis Scenarios Only 							
* Co	ntrol delay for worst minor approach (worst minor movement) for S	SSC.		* Control delay for worst minor approach (worst minor movement) for SSSC.						

Table 5 - Near-Term (2025) Intersection Levels of Service

As indicated in **Table 5**, the study intersections operate from LOS C to LOS E during the AM and PM peakhours. The analysis worksheets for this scenario are provided in **Appendix E**.

NEAR-TERM (2025) PLUS PROPOSED PROJECT CONDITIONS

Peak-hour traffic associated with the proposed project was added to the Near-Term (2015) traffic volumes, and levels of service were determined at the study facilities. **Table 6** provides a summary of the intersection operating conditions for this analysis scenario. **Figure 9** provides the AM and PM traffic volumes for this analysis scenario.

As indicated in **Table 6**, the study intersections operate from LOS A to LOS E during the AM and PM peakhours. The analysis worksheets for this scenario are provided in **Appendix F**.

⁶ As directed by a representative of the County, the Dixon Ranch project was manually added to the County's 2035 TDM for use in the traffic forecasting efforts for this project.

Kimley **»Horn**

Figure 8 Near-Term (2025) Peak-Hour Traffic Volumes 16-0582 2H 85 of 427

Kimley **»Horn**

Figure 9 Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes 16-0582 2H 86 of 427 Table 6 - Near-Term (2025) and Near-Term (2025) plus Proposed Project Intersection Levels of Service

		Analysis	Traffic	AM Peak-I	lour	PM Peak-H	lour	
#	Intersection	Analysis Scenario ⁺	Control	Delay (seconds)	LOS	Delay (seconds)	LOS	
1	Green Valley Road @	NT	Cianal	44.6	D	46.3	D	
T	Francisco Drive	NT+PP	Signal	44.7	D	46.7	D	
2	Francisco Drive @	NT	SSS 6*	28.1 (EB)	D	43.6 (EB)	E	
2	Cambria Way/Embarcadero Drive	NT+PP	SSSC [*]	27.8 (EB)	D	44.1 (EB)	Е	
3	El Dorado Hills Boulevard @	NT	AWSC	39.8	E	46.1	E	
3	Francisco Drive	NT+PP	AVVSC	40.0	E	46.6	E	
4	Green Valley Road @	NT		Plus Project And	lysis Scer	narios Only		
4	Project Site Access Driveway	NT+PP	SSSC*	10.7 (NB)	В	19.7 (NB)	С	
_ Cambria Way @ NT Plus Project An				Plus Project And	nalysis Scenarios Only			
5	Project Site Access Driveway	NT+PP	SSSC [*]	8.7 (SB)	А	8.8 (SB)	А	
+ NT	= Near-Term (2025), NT + PP = NT (2025) plus Propo	osed Project						

Control delay for worst minor approach (worst minor movement) for SSSC.

IMPACTS AND MITIGATION

Standards of Significance

Project impacts were determined by comparing conditions with the proposed project to those without the project. Impacts for intersections are created when traffic from the proposed project forces the LOS to fall below a specific threshold.

The County's standards⁷ specify the following:

"Level of Service (LOS) for County-maintained roads and State highways within the unincorporated areas of the County *shall not be worse than* <u>LOS E in the Community Regions</u>." (El Dorado County General Plan Policy TC-Xd) The study intersections are located within the El Dorado Hills Community Region.

"If a project causes the peak-hour LOS or volume/capacity ratio on a county road or State highway that would otherwise meet the County standards (without the project) to exceed the [given] values, then the impact shall be considered significant."

"If any county road or state highway fails to meet the [given] standards for peak hour LOS or volume/capacity ratios without the proposed project, and the project will worsen conditions on the road or highway, then the impact shall be considered significant." According to General Plan Policy TC- Xe⁸, 'worsen' is defined as "a 2 percent increase in traffic during the a.m. peak hour, p.m. peak hour, or daily, or the addition of 100 or more daily trips, or the addition of 10 or more trips during the a.m. peak hour or the p.m. peak hour."

⁷ Transportation Impact Study Guidelines, El Dorado County Community Development Agency, November 2014.

⁸ El Dorado County General Plan, Transportation and Circulation Element, July 2004.

Impacts and Mitigation

Existing (2015) plus Proposed Project Conditions

As reflected in **Table 4**, the addition of the proposed project does not result in a significant impact as defined by the County.

Impacts:

None.

Mitigation: None Required.

.

Near-Term (2025) plus Proposed Project Conditions

As reflected in **Table 6**, the addition of the proposed project does not result in a significant impact as defined by the County.

Impacts:

None.

Mitigation:

None Required.

OTHER CONSIDERATIONS

Peak-Hour Traffic Signal Warrant Evaluation

A planning level assessment of the need for traffic signalization was performed for the un-signalized study intersections. This evaluation was performed consistently with the peak-hour warrant methodologies noted in Section 4C of the *California Manual on Uniform Traffic Control Devices (CMUTCD), 2014 Edition*. A summary of the peak-hour warrant results are presented in **Table 7**.

		4	Analysis	Analysis Scenario				
#	Intersection	Existing (2015)	Existing (2015) plus PP	Near-Term (2025)	Near-Term (2025) plus PP			
2	Francisco Dr @ Cambria Wy	No / No	No / No	No / No	No / No			
3	El Dorado Hills Blvd @ Francisco Dr	Yes / Yes	Yes / Yes	Yes / Yes	Yes / Yes			
4	Cambria Way @ Project Access Dwy		No / No		No / No			
5	Green Valley Rd @ Site Access Dwy		No / No		No / No			
	Results are presented in AM / PM format. Note: Peak-hour warrant is satisfied if Condition A or B is met.							

As shown in **Table 7**, intersection #3 (El Dorado Hills Blvd @ Francisco Dr) satisfies the peak-hour signal warrant with and without the addition of the proposed project. However, the proposed project does not cause the peak-hour signal warrant to be satisfied at any of the study intersections. Detailed results of this analysis are presented in **Appendix G**.

Sight Distance Evaluation

A sight distance evaluation was completed for both site access driveways (Intersections #4 and #5). These evaluations were based on observed horizontal and vertical geometric conditions and were performed in accordance with the guidelines presented in the *Geometric Design of Highways and Streets, 2011*, published by the American Association of State Highway and Transportation Officials (AASHTO).

According to AASHTO, an assumed 30 mph design speed (25 mph posted speed limit) requires a minimum of 200 feet of Stopping Sight Distance (SSD). Adequate SSD was documented along the Cambria Way approaches to the site driveway. Furthermore, an assumed 60 mph design speed (55 mph posted speed limit) requires a minimum of 570 feet of SSD. Adequate sight distance was observed to the left (west) for the Green Valley Road intersection with the site access driveway.

To more thoroughly assess conditions for eastbound Cambria Way traffic at Francisco Drive, we also completed an evaluation of sight distance for this intersection approach. According to AASHTO, an assumed 45 mph design speed (40 mph posted speed limit) requires a minimum of 360-feet of SSD. Adequate AASHTO SSD was documented along the Francisco Drive approaches to Cambria Way. In all cases, roadside vegetation should be maintained to preserve sight distance.

Intersection Queuing Evaluation

Vehicle queuing for the study intersections was evaluated. For the queuing analysis, the anticipated vehicle queues for critical movements at these intersections were evaluated. The calculated vehicle queues were compared to actual or anticipated vehicle storage/segment lengths. Results of the queuing evaluation are presented in **Table 8**. Analysis sheets that include the anticipated vehicle queues are presented in Appendices B, C, E, and F. As presented in **Table 8**, the addition of the proposed project adds additional queuing to several of the study locations.

Site Plan, Access, and On-site Circulation Evaluation

The site plan for the proposed project (**Figure 2**) was qualitatively reviewed for general access and on-site circulation. According to the site plan, access to the site will be provided via two (2) driveways, one along Cambria Way and one along Green Valley Road. Level of service and delay data was previously reported for these intersections. The combination of these two access points, as well as the on-site circulation system provides adequate access to/from both Green Valley Road and Francisco Drive (via Cambria Way).

The proposed project's Green Valley Road Driveway is proposed to accommodate both right-in and right-out movements. Adequate deceleration distance should be provided and the acceleration distance should be considered as part of the existing eastbound right-turn pocket. The proposed geometrics and access are virtually identical to the existing Safeway center driveway located along the westbound approach to the Green Valley Road intersection with Francisco Drive. Furthermore, as documented in Appendices B, C, E, and F, the northbound right movement from the proposed project is not anticipated to be blocked by the eastbound approach queues at the Green Valley Road intersection with Francisco Drive.

In addition, *Fire Safe Regulations*⁹ state that on-site roadways shall "provide for safe access for emergency wildland fire equipment and civilian evacuation concurrently, and shall provide unobstructed traffic circulation during a wildfire emergency..." All project roadways shall be designed and constructed in accordance with these requirements.

 ⁹ Fire Safe Regulations, Title 14 Natural Resources, Division 1.5 Department of Forestry, Chapter 7 – Fire Protection, Subchapter
 2 SRA Safe Regulations, Article 2 Emergency Access, El Dorado County Building Department.

		AM Pea	k-Hour	PM Pea	k-Hour
Intersection / Analysis Scenario	Movement	Available	95 th %	Available	95 th %
		Storage (ft)	Queue (ft)	Storage (ft)	Queue (ft)
#1, Green Valley Rd @ Francisco Dr	NB Left				
E	xisting (2015)		151		157
Existing plus Proposed F	Project (2015)	200+	152	200+	160
Near	r-Term (2025)	200	128	200	204
Near-Term plus Proposed F	Project (2025)		129		205
	WB Left				
E	xisting (2015)		98		259
Existing plus Proposed F	Project (2015)	200	115	200	261
Near	r-Term (2025)	200	96	200	269
Near-Term plus Proposed F	Project (2025)		100		274
#2, Francisco Dr @ Cambria Way	EB Left				
E	xisting (2015)		25		25
Existing plus Proposed F	Project (2015)	*	25	*	25
	r-Term (2025)		25		25
Near-Term plus Proposed F	Project (2025)		25		25
#3, Francisco Dr @ El Dorado Hills Blvd	NB Left		1		
	xisting (2015)		303++		399++
	olus PP (2015)	100	305++	100	401++
	r-Term (2025)	100	264++	100	416++
	olus PP (2025)		266++		418++
#4, Green Valley Rd @ Site Dwy	NB				
	xisting (2015)				
	olus PP (2015)	*	0	*	0
	r-Term (2025)				
Near-Term p	olus PP (2025)		0		0
#5, Cambria Wy @ Site Dwy	SB		1	r	
	xisting (2015)				
	olus PP (2015)	*	0	*	0
	r-Term (2025)				
· · · · · · · · · · · · · · · · · · ·	olus PP (2025)	_	0		0
Source: Highway Capacity Manual (HCM) 2010 meth * Intersection approach with available storage length Policy on Geometric Design of Highways and Streets,	equal to segmer	nt length; * Dual			age 9-127 <i>, A</i>

Table 8 – Intersection Queuing Evaluation Results for Select Locations

Preliminary Traffic Safety Evaluation

According to the County's 2011 Accident Location Study¹⁰, several study area sites (i.e., intersections and roadway segments) experienced three (3) or more accidents during a three-year period between January 1, 2009, and December 31, 2011. According to the Study, these sites were selected for investigation and determination of corrective action(s). **Table 9** provides a summary of the study area sites and their selected actions.

According to the *Study*, eight (8) sites "do not require further review at this time. However, these sites will continue to be monitored and any subsequent increase in the frequency of accidents may necessitate further review and analysis." One (1) site has a pending improvement and it is anticipated that, "upon completion, [this] improvement will substantially reduce the number of accidents."

¹⁰ Annual Accident Location Study 2011, County of El Dorado Department of Transportation, March 18, 2012.

Site #	Location Description	Accident Rate⁺	Identified Action
13	El Dorado Hills Blvd, US 50 On/Off Ramps	1.07	Pending Improvements
14	El Dorado Hills Blvd, North of Lassen/Serrano Pkwy	0.25	None Required
15	El Dorado Hills Blvd, South of Wilson Blvd	0.12	None Required
16	El Dorado Hills Blvd, at Crown Dr	0.24	None Required
20	Green Valley Rd, vicinity of Sophia Pkwy	0.48	None Required
21	Green Valley Rd, vicinity of Amy's Ln	0.18	None Required
22	Green Valley Rd, vicinity of Mormon Island Dr	0.17	None Required
23	Green Valley Rd, vicinity of Silva Valley Pkwy	0.68	None Required
57	Serrano Pkwy, vicinity of El Dorado Hills Blvd	0.32	None Required
+ # Accidents	al Accident Location Study 2011, County of El Dorado Departme per Million Vehicles (MV) for single sites (intersections/curves), adway sections.	•	

Table 9 – Project Area Sites Selected for Investigation

Bicycle and Pedestrian Facilities Evaluation

According to Chapter 5 of the *El Dorado County Bicycle Transportation Plan*, Class II Bike Lanes are proposed for Green Valley Road, Francisco Drive, and El Dorado Hills Boulevard in the vicinity of the project site. In addition, Class III Bike Routes are proposed for Francisco Drive and Salmon Falls Road/Lakehills Drive north of Green Valley Road. A Class I Bike Path is also proposed for El Dorado Hills Boulevard, south of Francisco Drive.

While the project will not result in removal of a bikeway/bike lane or prohibition of implementation of the facilities identified in the *Plan*, it is required to include pedestrian/bicycle paths connecting to adjacent commercial, research and development, or industrial projects and any schools, parks, or other public facilities. The proposed project will be required to construct on-site roadway and pedestrian facilities in accordance with County design guidelines. These on-site pedestrian and bicycle facilities will connect the project with the proposed adjacent Class II Bike Lanes along Green Valley Road and Francisco Drive. Through these connections to the proposed bike lane network, the project will provide continuity with adjacent projects, schools, parks, and other public facilities.

CONCLUSIONS

Based upon the analysis documented in this report, the following conclusions are offered:

- The proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour.
- The County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.
- As defined by the County, the addition of the proposed project to the Existing (2015) and Near-Term (2025) scenarios does not worsen conditions at the study intersections. As a result, the project's potential environmental impacts to transportation facilities are considered to be *less than significant*.

Appendix A:

Traffic Count Data Sheets

(916) 771-8700

orders@atdtraffic.com

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

File Name : 15-7246-001 Francisco Drive-Embarcadero Drive-Cambria ' Date : 3/24/2015

06:00 0 40 0 0 40 2 0 2 0 4 0 06:15 2 55 0 1 58 2 0 4 0 6 0 06:30 1 47 2 0 50 0 0 7 0 7 0 06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0	2 114 1 0 117 4 0 1 0 5	Total Uturn Total 86 0 105 1 109 0 175 0 475 1 243 0
START TIME LEFT THRU RIGHT UTURNS APP.TOTAL LEFT 06:00 0 40 0 40 2 0 2 0 4 0 6 0 06:15 2 55 0 1 58 2 0 4 0 6 0 06:30 1 47 2 0 50 0 7 0 7 0 06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0	LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TOTAL 0 41 0 0 41 1 0 0 1 0 39 0 0 39 1 0 1 0 2 0 52 0 0 52 0 0 0 0 0 0 56 0 0 56 2 0 0 0 2 0 188 0 188 4 0 1 0 5 0 94 1 0 95 2 0 0 0 2 114 1 0 117 4 0 1 0 5	86 0 105 1 109 0 175 0 475 1
06:00 0 40 0 0 40 2 0 2 0 4 0 06:01 2 55 0 1 58 2 0 4 0 6 0 06:30 1 47 2 0 50 0 0 7 0 7 0 06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86 0 105 1 109 0 175 0 475 1
06:15 2 55 0 1 58 2 0 4 0 6 0 06:30 1 47 2 0 50 0 0 7 0 7 0 06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 1 109 0 175 0 475 1
06:30 06:45 1 47 2 0 50 0 0 7 0 7 0 06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109 0 175 0 475 1
06:45 1 110 1 0 112 0 0 5 0 5 0 Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0	0 56 0 0 56 2 0 0 2 0 188 0 0 188 4 0 1 0 5 0 94 1 0 95 2 0 0 0 2 2 114 1 0 117 4 0 1 0 5	175 0 475 1
Total 4 252 3 1 260 4 0 18 0 22 0 07:00 3 130 4 0 137 0 0 9 0 9 0 9 0	0 188 0 0 188 4 0 1 0 5 0 94 1 0 95 2 0 0 2 2 114 1 0 117 4 0 1 0 5	475 1
07:00 3 130 4 0 137 0 0 9 0 9 0	0 94 1 0 95 2 0 0 0 2 2 114 1 0 117 4 0 1 0 5	
	2 114 1 0 117 4 0 1 0 5	243 0
		243 0
07:30 9 154 4 0 167 0 0 15 0 15 1		296 0
	0 85 5 0 90 2 0 0 2	224 0
Total 28 497 11 0 536 0 0 45 0 45 3	3 394 11 0 408 16 0 1 0 17	1006 0
08:00 7 144 1 0 152 0 0 14 0 14 0	0 92 1 0 93 2 0 0 0 2	261 0
08:15 8 131 4 0 143 0 0 12 0 12 0	0 102 4 0 106 5 0 0 0 5	266 0
08:30 9 109 2 0 120 1 1 15 0 17 0	0 93 6 0 99 2 1 0 0 3	239 0
08:45 6 105 2 0 113 3 0 14 0 17 1	1 96 6 0 103 2 1 0 0 3	236 0
Total 30 489 9 0 528 4 1 55 0 60 1	1 383 17 0 401 11 2 0 0 13	1002 0
	0 119 5 0 124 4 1 1 0 6	308 1
	3 130 6 0 139 3 0 2 0 5	292 0
	1 118 6 0 125 0 0 2 0 2	275 1
	0 114 7 0 121 3 1 0 0 4	296 0
Total 50 485 12 2 549 19 0 77 0 96 4	4 481 24 0 509 10 2 5 0 17	1171 2
16:00 13 128 5 0 146 6 0 19 0 25 1	1 116 3 0 120 4 0 1 0 5	296 0
	0 136 6 0 142 6 0 1 0 7	311 0
	0 118 5 0 123 3 0 1 0 4	273 0
<u>16:45 12 127 6 1 146 2 0 17 0 19 1</u>	1 128 4 0 133 0 1 1 0 2	300 1
Total 45 493 21 1 560 18 1 65 0 84 2	2 498 18 0 518 13 1 4 0 18	1180 1
17:00 15 130 3 1 149 8 0 26 0 34 0	0 123 4 0 127 4 0 3 0 7	317 1
17:15 15 144 5 0 164 8 0 23 0 31 1	1 130 6 0 137 3 0 0 0 3	335 0
	0 120 2 0 122 5 1 1 0 7	287 2
<u>17:45 12 128 5 1 146 1 0 18 0 19 1</u>	1 120 4 0 125 1 1 0 0 2	292 1
Total 54 521 15 4 594 19 1 87 0 107 2	2 493 16 0 511 13 2 4 0 19	1231 4
Grand Total 211 2737 71 8 3027 64 3 347 0 414 12	12 2437 86 0 2535 67 7 15 0 89	6065 8
	0.5% 96.1% 3.4% 0.0% 75.3% 7.9% 16.9% 0.0%	
Total % 3.5% 45.1% 1.2% 0.1% 49.9% 1.1% 0.0% 5.7% 0.0% 6.8% 0.2		100.0%

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

File Name : 15-7246-001 Francisco Drive-Embarcadero Drive-Cambria ' Date : 3/24/2015

										ted Count	= AII VE										1
AM PEAK		Fi	ancisco I	Drive			Em	barcadero	o Drive			F	rancisco	Drive				Cambria	Way		i i
HOUR			Southbou	Ind				Westbou	nd				Northbo	und				Eastbou	und		i i
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 07:30 t	o 08:30		-					-											
Peak Hour Fo	r Entire li	ntersectior	Begins a	at 07:30																	
07:30	9	154	4	0	167	0	0	15	0	15	1	101	4	0	106	8	0	0	0	8	296
07:45	13	111	1	0	125	0	0	7	0	7	0	85	5	0	90	2	0	0	0	2	224
08:00	7	144	1	0	152	0	0	14	0	14	0	92	1	0	93	2	0	0	0	2	261
08:15	8	131	4	0	143	0	0	12	0	12	0	102	4	0	106	5	0	0	0	5	266
Total Volume	37	540	10	0	587	0	0	48	0	48	1	380	14	0	395	17	0	0	0	17	1047
% App Total	6.3%	92.0%	1.7%	0.0%		0.0%	0.0%	100.0%	0.0%		0.3%	96.2%	3.5%	0.0%		100.0%	0.0%	0.0%	0.0%		1
PHF	.712	.877	.625	.000	.879	.000	.000	.800	.000	.800	.250	.931	.700	.000	.932	.531	.000	.000	.000	.531	.884

PM PEAK		Fi	ancisco	Drive			Em	barcader	o Drive			F	rancisco	Drive			(Cambria \	Nay		
HOUR			Southbo	und				Westbou	und				Northbou	und				Eastbou	nd		
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 16:45 t	o 17:45																		
Peak Hour Fo	r Entire Ir	ntersectior	n Begins	at 16:45																	
16:45	12	127	6	1	146	2	0	17	0	19	1	128	4	0	133	0	1	1	0	2	300
17:00	15	130	3	1	149	8	0	26	0	34	0	123	4	0	127	4	0	3	0	7	317
17:15	15	144	5	0	164	8	0	23	0	31	1	130	6	0	137	3	0	0	0	3	335
17:30	12	119	2	2	135	2	1	20	0	23	0	120	2	0	122	5	1	1	0	7	287
Total Volume	54	520	16	4	594	20	1	86	0	107	2	501	16	0	519	12	2	5	0	19	1239
% App Total	9.1%	87.5%	2.7%	0.7%		18.7%	0.9%	80.4%	0.0%		0.4%	96.5%	3.1%	0.0%		63.2%	10.5%	26.3%	0.0%		
PHF	.900	.903	.667	.500	.905	.625	.250	.827	.000	.787	.500	.963	.667	.000	.947	.600	.500	.417	.000	.679	.925

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

File Name : 15-7246-002 El Dorado Hills Boulevard-Francisco Drive.ppc Date : 3/24/2015

Nothing of t									Unshif	ted Count	- ΔΙΙ Ve	hicles										
Г		El Dor:	ado Hills	Boulevard			F	rancisco I					ado Hills	Boulevard			F	rancisco I	Drive		1	
			Southbo			1		Westbou					Northbou					Eastbou				
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturn Total
06:00	1	23	0	0	24	2	3	0	0	5	36	6	0	0	42	0	1	43	0	44	115	0
06:15	0	51	0	0	51	5	5	0	0	10	41	5	0	0	46	0	1	58	0	59	166	0
06:30	1	46	0	0	47	0	3	1	0	4	43	4	1	0	48	0	2	42	0	44	143	0
06:45	2	62	0	0	64	5	7	1	0	13	56	14	4	0	74	0	2	103	0	105	256	0
Total	4	182	0	0	186	12	18	2	0	32	176	29	5	0	210	0	6	246	0	252	680	0
07:00	5	89	0	0	94	13	7	4	0	24	85	20	2	0	107	0	0	132	0	132	357	0
07:00	5	89 79	0	0	94 84	10	7 18	4	0	24 30	85 97	20 43	2 2	0	142	0	5	97	0	102	358	0
07:30	22	79 76	1	0	84 99	10	10	2	0	30 24	97 95	43 20	2	0	142	0	6	97 144	0	102	391	0
07:45	19	81	0	0	100	9	12	6	0	24	93 75	20	3	0	104	0	9	106	0	115	347	0
Total	51	325	1	0	377	42	50	14	0	106	352	109	10	0	471	0	20	479	0	499	1453	0
10101	01	020		0	011	1 .2	00		Ŭ	100	002	100	10	Ū		Ū	20		Ū	100	1100	Ū
08:00	12	68	0	0	80	5	11	6	0	22	83	21	8	0	112	1	5	123	0	129	343	0
08:15	23	69	0	0	92	16	10	11	0	37	99	39	10	0	148	1	4	139	0	144	421	0
08:30	65	52	1	0	118	20	18	24	0	62	78	35	23	0	136	0	12	95	0	107	423	0
08:45	8	47	2	0	57	30	24	22	0	76	79	30	9	0	118	0	5	104	0	109	360	0
Total	108	236	3	0	347	71	63	63	0	197	339	125	50	0	514	2	26	461	0	489	1547	0
45.00					50		05		•		1 404	07	-		405			100		101	450	
15:00	20	38	1	0	59	14	25	32	0 0	71	101 124	87 71	6	0 0	195 201	0	11	120 114	0 0	131 127	456 409	0 0
15:15 15:30	11 2	32 38	2 1	0	45 41	9 2	13 13	14 4	0	36 19	124	51	6 4	0	201 167	2 0	11 7	114	0	127	409 354	0
15:45	2 5	30	1	0	41	9	8	4	0	20	112	64	4 5	0	186	0	12	120	0	127	377	0
Total	38	145	5	0	188	34	59	53	0	146	454	273	22	0	749	2	41	470	0	513	1596	0
Total	50	140	0	0	100	04	00	00	U	140	-0-	210	~~~	U	745	2	- 1	470	U	010	1000	0
16:00	1	31	1	0	33	0	9	11	0	20	108	72	9	0	189	3	10	123	0	136	378	0
16:15	4	41	0	0	45	6	15	5	0	26	124	68	9	0	201	2	8	113	0	123	395	0
16:30	9	41	1	0	51	7	10	7	0	24	113	65	4	0	182	1	16	109	0	126	383	0
16:45	4	44	1	0	49	5	6	3	0	14	123	59	7	0	189	0	14	116	0	130	382	0
Total	18	157	3	0	178	18	40	26	0	84	468	264	29	0	761	6	48	461	0	515	1538	0
						1					1					1 .					1	
17:00	4	33	0	0	37	10	14	12	0	36	114	74	16	0	204	1	8	128	0	137	414	0
17:15	10	36	1	0	47	5	7	13	0	25	126	59	10	0	195	0	10	141	0	151	418	0
17:30	5	46	0	0	51	7	15	6	0	28	115	56	5	0	176	3	12	107	0	122	377	0
17:45	1	30	0	0	31	2	5	5	0	12	117	70	3 34	0	190	0	14	104	0	118	351	0
Total	20	145	1	0	166	24	41	36	0	101	472	259	34	0	765	4	44	480	0	528	1560	0
Grand Total	239	1190	13	0	1442	201	271	194	0	666	2261	1059	150	0	3470	14	185	2597	0	2796	8374	0
Apprch %	16.6%	82.5%	0.9%	0.0%	1442	30.2%	40.7%	29.1%	0.0%	000	65.2%	30.5%	4.3%	0.0%	5470	0.5%	6.6%	92.9%	0.0%	2130	0014	0
Total %	2.9%	14.2%	0.3%	0.0%	17.2%	2.4%	3.2%	2.3%	0.0%	8.0%	27.0%	12.6%	1.8%	0.0%	41.4%	0.3%	2.2%	31.0%	0.0%	33.4%	100.0%	
rotar 70	2.070	1 1.2 /0	0.275	0.070	11.2/5	2.170	0.275	2.070	0.070	0.070	21.070	12.070	1.070	0.070	11.175	0.275	2.270	51.070	0.070	00.170		

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

File Name : 15-7246-002 El Dorado Hills Boulevard-Francisco Drive.ppc Date : 3/24/2015

										fted Count	= All Ve										-
AM PEAK		El Dora	ado Hills I	Boulevard			F	rancisco [Drive			El Dor	ado Hills	Boulevard			F	rancisco	Drive		1
HOUR			Southbou	Ind				Westbou	nd				Northbou	und				Eastbou	Ind		1
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 08:00 f	to 09:00																		
Peak Hour Fo	r Entire Ir	ntersectior	n Begins a	at 08:00																	
08:00	12	68	0	0	80	5	11	6	0	22	83	21	8	0	112	1	5	123	0	129	343
08:15	23	69	0	0	92	16	10	11	0	37	99	39	10	0	148	1	4	139	0	144	421
08:30	65	52	1	0	118	20	18	24	0	62	78	35	23	0	136	0	12	95	0	107	423
08:45	8	47	2	0	57	30	24	22	0	76	79	30	9	0	118	0	5	104	0	109	360
Total Volume	108	236	3	0	347	71	63	63	0	197	339	125	50	0	514	2	26	461	0	489	1547
% App Total	31.1%	68.0%	0.9%	0.0%		36.0%	32.0%	32.0%	0.0%		66.0%	24.3%	9.7%	0.0%		0.4%	5.3%	94.3%	0.0%		i
PHF	.415	.855	.375	.000	.735	.592	.656	.656	.000	.648	.856	.801	.543	.000	.868	.500	.542	.829	.000	.849	.914

PM PEAK		El Dora	ado Hills I	Boulevard			F	rancisco l	Drive			El Dor	ado Hills I	Boulevard			F	rancisco	Drive		ł
HOUR			Southbou	und				Westbou	Ind				Northbou	Ind				Eastbou	nd		1
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 16:30 f	to 17:30																		
Peak Hour Fo	r Entire Ir	ntersectior	n Begins a	at 16:30																	
16:30	9	41	1	0	51	7	10	7	0	24	113	65	4	0	182	1	16	109	0	126	383
16:45	4	44	1	0	49	5	6	3	0	14	123	59	7	0	189	0	14	116	0	130	382
17:00	4	33	0	0	37	10	14	12	0	36	114	74	16	0	204	1	8	128	0	137	414
17:15	10	36	1	0	47	5	7	13	0	25	126	59	10	0	195	0	10	141	0	151	418
Total Volume	27	154	3	0	184	27	37	35	0	99	476	257	37	0	770	2	48	494	0	544	1597
% App Total	14.7%	83.7%	1.6%	0.0%		27.3%	37.4%	35.4%	0.0%		61.8%	33.4%	4.8%	0.0%		0.4%	8.8%	90.8%	0.0%		1
PHF	.675	.875	.750	.000	.902	.675	.661	.673	.000	.688	.944	.868	.578	.000	.944	.500	.750	.876	.000	.901	.955

Appendix B:

Analysis Worksheets for Existing (2015) Conditions

	1	۶	-	\mathbf{F}	F	4	-	×.	1	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ልካ	<u>††</u>	1		N.	<u>††</u>	1	ሻሻ	≜ î≽		٦
Volume (veh/h)	1	161	216	230	15	45	813	106	306	180	6	122
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1810	1776	1845		1900	1881	1863	1845	1863	1900	1845
Adj Flow Rate, veh/h		199	267	284		52	934	122	364	214	7	158
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.81	0.81	0.81		0.87	0.87	0.87	0.84	0.84	0.84	0.77
Percent Heavy Veh, %		5	7	3		0	1	2	3	2	2	3
Cap, veh/h		191	1096	510		67	1090	483	438	1125	37	192
Arrive On Green		0.06	0.32	0.32		0.04	0.30	0.30	0.13	0.32	0.32	0.11
Sat Flow, veh/h		3344	3374	1568		1810	3574	1583	3408	3498	114	1757
Grp Volume(v), veh/h		199	267	284		52	934	122	364	108	113	158
Grp Sat Flow(s), veh/h/ln		1672	1687	1568		1810	1787	1583	1704	1770	1843	1757
Q Serve(q_s), s		5.0	5.1	13.1		2.5	21.6	5.1	9.1	3.9	3.9	7.7
Cycle Q Clear(g_c), s		5.0	5.1	13.1		2.5	21.6	5.1	9.1	3.9	3.9	7.7
Prop In Lane		1.00	0.1	1.00		1.00	21.0	1.00	1.00	0.7	0.06	1.00
Lane Grp Cap(c), veh/h		191	1096	510		67	1090	483	438	569	593	192
V/C Ratio(X)		1.04	0.24	0.56		0.78	0.86	0.25	0.83	0.19	0.19	0.82
Avail Cap(c_a), veh/h		191	1096	510		103	1153	511	466	569	593	220
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.4	21.7	24.4		41.9	28.7	23.0	37.3	21.5	21.5	38.3
Incr Delay (d2), s/veh		77.2	0.1	1.4		18.0	6.3	0.3	11.5	0.2	0.2	19.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.2	0.2	0.0
%ile BackOfQ(50%),veh/ln		4.3	2.4	5.8		1.6	11.6	2.3	5.0	1.9	2.0	4.8
LnGrp Delay(d),s/veh		118.6	21.8	25.8		59.8	35.0	23.2	48.8	21.7	21.7	57.9
LnGrp LOS		F	C	20.0 C		57.0 E	00.0 D	C	40.0 D	C	C	57.7 E
Approach Vol, veh/h			750	0		L	1108	<u> </u>		585	0	
Approach Delay, s/veh			49.0				34.9			38.6		
Approach LOS			47.0 D				С С			50.0 D		
	1	0			-	,		0		D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.2	34.2	15.3	31.0	9.0	32.4	13.6	32.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+I1), s	4.5	15.1	11.1	28.0	7.0	23.6	9.7	5.9				
Green Ext Time (p_c), s	0.0	7.1	0.1	0.0	0.0	3.2	0.1	5.9				
Intersection Summary												
HCM 2010 Ctrl Delay			43.7									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	ţ	~
Movement	SBT	SBR
Lane Configurations	<u> </u>	
Volume (veh/h)	312	367
Number	4	14
Initial Q (Qb), veh	4	0
Ped-Bike Adj(A_pbT)	0	1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1881	1881
Adj Flow Rate, veh/h	405	477
Adj No. of Lanes	403	477
Peak Hour Factor	0.77	0.77
Peak Hour Factor Percent Heavy Veh, %		0.77
	1 568	483
Cap, veh/h Arrive On Green		
	0.30	0.30
Sat Flow, veh/h	1881	1599
Grp Volume(v), veh/h	405	477
Grp Sat Flow(s),veh/h/ln	1881	1599
Q Serve(g_s), s	16.8	26.0
Cycle Q Clear(g_c), s	16.8	26.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	568	483
V/C Ratio(X)	0.71	0.99
Avail Cap(c_a), veh/h	568	483
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	27.2	30.4
Incr Delay (d2), s/veh	4.2	37.5
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.3	16.5
LnGrp Delay(d),s/veh	31.4	68.0
LnGrp LOS	С	E
Approach Vol, veh/h	1040	
Approach Delay, s/veh	52.2	
Approach LOS	D	
Timor		
Timer		

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	19	0	0	0	0	53	1	420	14	37	540	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	70	70	70	80	80	80	93	93	93	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	0	0	0	0	66	1	452	15	42	614	11

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1192	1167	614	1159	1159	459	614	0	0	467	0	0
Stage 1	698	698	-	461	461	-	-	-	-	-	-	-
Stage 2	494	469	-	698	698	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	164	194	492	173	196	602	965	-	-	1094	-	-
Stage 1	431	442	-	581	565	-	-	-	-	-	-	-
Stage 2	557	561	-	431	442	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	142	186	492	168	188	602	965	-	-	1094	-	-
Mov Cap-2 Maneuver	142	186	-	168	188	-	-	-	-	-	-	-
Stage 1	431	425	-	580	564	-	-	-	-	-	-	-
Stage 2	495	560	-	414	425	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	36.2	11.7	0	0.5
HCM LOS	E	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	965	-	-	142	602	1094	-	-
HCM Lane V/C Ratio	0.001	-	-	0.191	0.11	0.038	-	-
HCM Control Delay (s)	8.7	-	-	36.2	11.7	8.4	-	-
HCM Lane LOS	А	-	-	E	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.7	0.4	0.1	-	-

EDI	ГОТ				WDT			NDI	NDT	
										NBR
_		509					-			50
0.85	0.85	0.85	0.70	0.70	0.70	0.70	0.87	0.87	0.87	0.87
2	2	2	2	2	2	2	2	2	2	2
2	34	599	0	101	96	90	0	418	144	57
0	1	0	0	0	1	0	0	1	1	0
WB				EB				SB		
1				1				2		
SB				NB				EB		
2				2				1		
NB				SB				WB		
2				2				1		
71.7				33.4				58.8		
F				D				F		
NBI n1	NBI n2	FBI n1	WRI n1	SBI n1	SBI n2					
	EBL 2 0.85 2 2 2 2 0 0 0 EB WB 1 SB 2 NB 2 NB 2 71.7	EBL EBT 2 29 0.85 0.85 2 2 2 34 0 1 EB WB 1 SB 2 NB 2 71.7 F	EBL EBT EBR 2 29 509 0.85 0.85 0.85 2 2 2 2 34 599 0 1 0 EB WB 1 SB 2 1 2 2 1 NB 2 1 71.7 F 1	EBL EBT EBR WBU 2 29 509 0 0.85 0.85 0.85 0.70 2 2 2 2 2 34 599 0 0 1 0 0 EB WB I I I SB 2 I I I NB 2 I I I 2 71.7 F I I	EBL EBT EBR WBU WBL 2 29 509 0 71 0.85 0.85 0.85 0.70 0.70 2 2 2 2 2 2 34 599 0 101 0 1 0 0 0 EB WB EB MB 2 2 2 2 NB 2 2 2 NB SB SB 2 2 2 2 2 71.7 33.4 F	EBL EBT EBR WBU WBL WBT 2 29 509 0 71 67 0.85 0.85 0.70 0.70 0.70 2 2 2 2 2 2 2 2 2 2 2 2 2 34 599 0 101 96 0 1 0 0 0 1 EB EB 1 SB NB 2 2 2 NB SB SB 2 2 71.7 33.4 F D	EBL EBT EBR WBU WBL WBT WBR 2 29 509 0 71 67 63 0.85 0.85 0.70 0.70 0.70 0.70 2 2 2 2 2 2 2 2 34 599 0 101 96 90 0 1 0 0 0 1 0 EB WB EB NB 2<	EBL EBT EBR WBU WBL WBT WBR NBU 2 29 509 0 71 67 63 0 0.85 0.85 0.85 0.70 0.70 0.70 0.70 0.87 2	EBL EBT EBR WBU WBL WBT WBR NBU NBL 2 29 509 0 71 67 63 0 364 0.85 0.85 0.85 0.70 0.70 0.70 0.70 0.87 0.87 2 3 5 8 1 1 2 2 3 1 1 1 1 1 1 1 3	EBL EBT EBR WBU WBL WBT WBR NBU NBL NBT 2 29 509 0 71 67 63 0 364 125 0.85 0.85 0.85 0.70 0.70 0.70 0.70 0.87 0.87 0.87 2 3 1 1 1 1 1 1 1 1 1 1

Lane	NBLn1	NBLn2	FRTUJ	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	35%	100%	0%	
Vol Thru, %	0%	71%	5%	33%	0%	98%	
Vol Right, %	0%	29%	94%	31%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	364	175	540	201	108	240	
LT Vol	364	0	2	71	108	0	
Through Vol	0	125	29	67	0	236	
RT Vol	0	50	509	63	0	4	
Lane Flow Rate	418	201	635	287	148	329	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.491	1	0.729	0.398	0.838	
Departure Headway (Hd)	9.488	8.788	8.13	9.248	9.686	9.174	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	385	412	451	393	374	398	
Service Time	7.201	6.501	6.145	7.248	7.386	6.875	
HCM Lane V/C Ratio	1.086	0.488	1.408	0.73	0.396	0.827	
HCM Control Delay	77.6	19.7	71.7	33.4	18.6	44.6	
HCM Lane LOS	F	С	F	D	С	E	
HCM 95th-tile Q	11.9	2.6	12.9	5.6	1.9	7.8	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	108	236	4
Peak Hour Factor	0.73	0.73	0.73	0.73
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	148	323	5
Number of Lanes	0	1	1	0
	U		1	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		36.5		
HCM LOS		E		
		L		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{i}	4	+	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	200	267	284	69	934	122	364	221	158	405	477	
v/c Ratio	1.22	0.24	0.40	0.61	0.85	0.21	0.78	0.21	0.73	0.78	0.88	
Control Delay	180.8	22.7	4.9	65.5	36.5	5.6	49.4	23.2	58.5	40.1	40.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	180.8	22.7	4.9	65.5	36.5	5.6	49.4	23.2	58.5	40.1	40.0	
Queue Length 50th (ft)	~76	58	0	39	257	0	105	47	88	206	184	
Queue Length 95th (ft)	#125	80	36	#98	318	34	#151	70	#139	252	235	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	164	1142	718	113	1207	615	487	1158	230	594	600	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.22	0.23	0.40	0.61	0.77	0.20	0.75	0.19	0.69	0.68	0.80	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	<u>††</u>	1		à	<u>††</u>	1	ሻሻ	∱ ₽		٦	1
Volume (veh/h)	445	805	319	69	73	503	93	319	260	24	113	202
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1881	1881		1900	1881	1863	1881	1881	1900	1881	1863
Adj Flow Rate, veh/h	468	847	336		83	572	106	347	283	26	131	235
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86
Percent Heavy Veh, %	0	1	1		0	1	2	1	1	1	1	2
Cap, veh/h	516	1296	580		107	982	435	445	804	73	165	385
Arrive On Green	0.15	0.36	0.36		0.06	0.27	0.27	0.13	0.24	0.24	0.09	0.21
Sat Flow, veh/h	3510	3574	1599		1810	3574	1583	3476	3313	302	1792	1863
Grp Volume(v), veh/h	468	847	336		83	572	106	347	152	157	131	235
Grp Sat Flow(s), veh/h/ln	1755	1787	1599		1810	1787	1583	1738	1787	1828	1792	1863
Q Serve(g_s), s	9.8	14.8	12.7		3.4	10.3	3.9	7.2	5.3	5.3	5.4	8.6
Cycle Q Clear(g_c), s	9.8	14.8	12.7		3.4	10.3	3.9	7.2	5.3	5.3	5.4	8.6
Prop In Lane	1.00	14.0	1.00		1.00	10.5	1.00	1.00	0.0	0.17	1.00	0.0
Lane Grp Cap(c), veh/h	516	1296	580		107	982	435	445	434	444	165	385
V/C Ratio(X)	0.91	0.65	0.58		0.78	0.58	0.24	0.78	0.35	0.35	0.79	0.61
Avail Cap(c_a), veh/h	516	1520	680		121	1233	546	558	645	660	192	573
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1200	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.4	19.9	19.2		34.7	23.4	21.1	31.6	23.4	23.5	33.3	26.9
Incr Delay (d2), s/veh	19.6	0.8	0.9		23.9	0.6	0.3	5.5	0.5	23.5	17.7	1.6
	0.0	0.0	0.9		23.9	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	6.2	7.4	5.7		2.4	5.2	1.7	3.8	2.6	2.7	3.5	4.5
%ile BackOfQ(50%),veh/In			5.7 20.1					37.1		2.7		4.5 28.5
LnGrp Delay(d),s/veh	51.0 D	20.7 C	20.1 C		58.6 E	24.0	21.4 C		23.9 C		51.0	
LnGrp LOS	D		L		E	C	L	D		С	D	<u>C</u>
Approach Vol, veh/h		1651				761			656			602
Approach Delay, s/veh		29.2				27.4			30.9			34.2
Approach LOS		С				С			С			С
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.4	32.8	13.6	20.0	15.0	26.2	10.9	22.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	5.4	16.8	9.2	12.4	11.8	12.3	7.4	7.3				
Green Ext Time (p_c), s	0.0	8.8	0.4	3.1	0.0	8.2	0.0	4.0				
Intersection Summary												
HCM 2010 Ctrl Delay			29.9									
HCM 2010 LOS			С									
Notes												

Notes

User approved ignoring U-Turning movement.

	1
Movement	SBR
Land Configurations	1
Volume (veh/h)	203
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	236
Adj No. of Lanes	1
Peak Hour Factor	0.86
Percent Heavy Veh, %	2
Cap, veh/h	327
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	236
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	10.4
Cycle Q Clear(g_c), s	10.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	327
V/C Ratio(X)	0.72
Avail Cap(c_a), veh/h	487
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	27.7
Incr Delay (d2), s/veh	3.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	4.8
LnGrp Delay(d),s/veh	30.7
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

2.8

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	12	2	5	20	1	86	2	501	16	4	54	520	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	70	70	70	79	79	79	95	95	95	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	17	3	7	25	1	109	2	527	17	4	59	571	18

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1285	1247	571	1235	1239	540	571	0	0	653	544	0	0
Stage 1	690	699	-	540	540	-	-	-	-	-	-	-	-
Stage 2	595	548	-	695	699	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	142	173	520	153	175	542	1002	-	-	-	1025	-	-
Stage 1	435	442	-	526	521	-	-	-	-	-	-	-	-
Stage 2	491	517	-	433	442	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	113	173	520	149	175	542	1002	-	-	~ -15	~ -15	-	-
Mov Cap-2 Maneuver	113	173	-	149	175	-	-	-	-	-	-	-	-
Stage 1	434	442	-	525	520	-	-	-	-	-	-	-	-
Stage 2	391	516	-	424	442	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	34.5	21	0		
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1\	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1002	-	-	149	358	+	-	-	
HCM Lane V/C Ratio	0.002	-	-	0.182	0.378	-	-	-	
HCM Control Delay (s)	8.6	-	-	34.5	21	-	-	-	
HCM Lane LOS	А	-	-	D	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.6	1.7	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 30	DOs	+: Com	outation	Not De	efined	*: All major volume in platoon

Kimley-Horn HCM 2010 TWSC

Intersection												
Intersection Delay, s/veh	48.7											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	48	495	0	27	37	35	0	479	257	37
Peak Hour Factor	0.90	0.90	0.90	0.90	0.70	0.70	0.70	0.70	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	53	550	0	39	53	50	0	510	273	39
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		63				14.7				52.2		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	27%	100%	0%					
Vol Thru %		0%	070/	0%	270/	0%	000/					

Vol Left, %	100%	0%	0%	27%	100%	0%	
Vol Thru, %	0%	87%	9%	37%	0%	98%	
Vol Right, %	0%	13%	91%	35%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	479	294	545	99	27	157	
LT Vol	479	0	2	27	27	0	
Through Vol	0	257	48	37	0	154	
RT Vol	0	37	495	35	0	3	
Lane Flow Rate	510	313	606	141	30	174	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.636	1	0.314	0.074	0.403	
Departure Headway (Hd)	7.914	7.326	6.324	7.981	8.836	8.323	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	459	491	575	451	406	433	
Service Time	5.669	5.081	4.385	6.029	6.575	6.062	
HCM Lane V/C Ratio	1.111	0.637	1.054	0.313	0.074	0.402	
HCM Control Delay	70.6	22.1	63	14.7	12.3	16.6	
HCM Lane LOS	F	С	F	В	В	С	
HCM 95th-tile Q	13	4.4	14.5	1.3	0.2	1.9	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
	CDU	CDI	CDT	CDD
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	154	3
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	30	171	3
Number of Lanes	0	1	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		16		
		C		
HCM LOS				

Lane
El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٨	+	*	4	Ļ	•	<	†	*	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	468	847	336	161	572	106	347	309	131	235	236	
v/c Ratio	0.91	0.71	0.44	1.61	0.63	0.20	0.67	0.35	0.68	0.62	0.46	
Control Delay	58.3	26.1	4.5	348.1	28.8	2.0	40.1	24.3	56.8	36.3	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.3	26.1	4.5	348.1	28.8	2.0	40.1	24.3	56.8	36.3	7.2	
Queue Length 50th (ft)	117	183	0	~115	127	0	81	61	62	104	0	
Queue Length 95th (ft)	#252	278	55	#259	192	9	#157	102	#162	176	48	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	517	1526	875	100	1238	655	558	1286	192	575	652	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.56	0.38	1.61	0.46	0.16	0.62	0.24	0.68	0.41	0.36	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ~

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

1.1 Turiologo D1. C		vanoy										
	1	۶	→	*	ł	4	Ļ	×	•	Ť	*	1
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		<u>ሕ</u> ካ	<u>††</u>	1		Ä	<u>††</u>	1	ሻሻ	≜ †⊅		۲
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.995		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3336	3374	1568	0	1805	3574	1583	3400	3522	0	1752
Flt Permitted		0.784							0.950			0.950
Satd. Flow (perm)	0	2753	3374	1568	0	1900	3574	1583	3400	3522	0	1752
Right Turn on Red				Yes				Yes			Yes	
• •				284				122		4		
			50				50					
• •			437				631					
Travel Time (s)			6.0				8.6			10.3		
Intersection Summary												
	Other											
Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Travel Time (s) Intersection Summary Area Type:	Other		437	284			631	122		30 452		

yр

Т

	Ļ	-
Lane Group	SBT	SBR
Lane Configurations	1	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1881	1599
Flt Permitted		
Satd. Flow (perm)	1881	1599
Right Turn on Red		Yes
Satd. Flow (RTOR)		139
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center 2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	۶	→	\mathbf{r}	∢	←	•	•	Ť	*	>	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	†		۲	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.865			0.995				0.850
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.950					0.950			0.950		
Satd. Flow (perm)	0	1770	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

		Taricis										
	٦	-	\mathbf{r}	4	-	•	•	Ť	*	×	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		<u>۲</u>	4î		<u>۲</u>	¢î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.873			0.958			0.957			0.998	
Flt Protected					0.983		0.950			0.950		
Satd. Flow (prot)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Flt Permitted					0.983		0.950			0.950		
Satd. Flow (perm)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2100			982			1162			698	
Travel Time (s)		47.7			22.3			17.6			10.6	
Intersection Summary												

Area Type:

Other

Appendix C:

Analysis Worksheets for Existing (2015) plus Proposed Project Conditions

	5	۶	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	≜ î≽		۲
Volume (veh/h)	1	161	217	230	15	47	813	106	307	180	6	122
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1810	1776	1845		1900	1881	1863	1845	1863	1900	1845
Adj Flow Rate, veh/h		199	268	284		54	934	122	365	214	7	158
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.81	0.81	0.81		0.87	0.87	0.87	0.84	0.84	0.84	0.77
Percent Heavy Veh, %		5	7	3		0	1	2	3	2	2	3
Cap, veh/h		190	1092	508		69	1091	483	439	1125	37	192
Arrive On Green		0.06	0.32	0.32		0.04	0.31	0.31	0.13	0.32	0.32	0.11
Sat Flow, veh/h		3344	3374	1568		1810	3574	1583	3408	3498	114	1757
Grp Volume(v), veh/h		199	268	284		54	934	122	365	108	113	158
Grp Sat Flow(s), veh/h/ln		1672	1687	1568		1810	1787	1583	1704	1770	1843	1757
Q Serve(g_s), s		5.0	5.1	13.1		2.6	21.6	5.1	9.2	3.9	3.9	7.7
Cycle Q Clear(g_c), s		5.0	5.1	13.1		2.6	21.6	5.1	9.2	3.9	3.9	7.7
Prop In Lane		1.00	0.1	1.00		1.00	20	1.00	1.00	017	0.06	1.00
Lane Grp Cap(c), veh/h		190	1092	508		69	1091	483	439	569	592	192
V/C Ratio(X)		1.04	0.25	0.56		0.78	0.86	0.25	0.83	0.19	0.19	0.82
Avail Cap(c_a), veh/h		190	1092	508		103	1152	510	466	569	592	220
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.4	21.8	24.5		41.8	28.7	23.0	37.3	21.5	21.5	38.3
Incr Delay (d2), s/veh		77.5	0.1	1.4		19.3	6.3	0.3	11.6	0.2	0.2	19.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.3	2.4	5.8		1.7	11.6	2.3	5.0	1.9	2.0	4.8
LnGrp Delay(d),s/veh		118.9	21.9	25.9		61.2	35.0	23.2	48.9	21.7	21.7	58.0
LnGrp LOS		F	C	C		E	C	C	D	C	C	E
Approach Vol, veh/h		•	751	0			1110	<u> </u>	D	586	0	
Approach Delay, s/veh			49.1				35.0			38.7		
Approach LOS			ч <i>л</i> .т				00.0 C			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.4	34.1	15.3	31.0	9.0	32.5	13.6	32.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+11) , s	4.6	20.3 15.1	12.0	20.5	7.0	28.5	9.7	5.9				
Green Ext Time (p_c), s	4.0 0.0	7.1	0.1	0.0	0.0	3.2	0.1	5.9				
	0.0	7.1	0.1	0.0	0.0	0.2	0.1	0.7				
Intersection Summary			42.0									
HCM 2010 Ctrl Delay			43.8									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	ţ	~
Movement	SBT	SBR
Lane Configurations	1	1
Volume (veh/h)	312	367
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1881	1881
Adj Flow Rate, veh/h	405	477
Adj No. of Lanes	1	1
Peak Hour Factor	0.77	0.77
Percent Heavy Veh, %	1	1
Cap, veh/h	568	483
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1881	1599
Grp Volume(v), veh/h	405	477
Grp Sat Flow(s), veh/h/ln	1881	1599
Q Serve(q_s), s	16.8	26.1
Cycle Q Clear(g_c), s	16.8	26.1
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	568	483
V/C Ratio(X)	0.71	0.99
Avail Cap(c_a), veh/h	568	483
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	27.3	30.5
Incr Delay (d2), s/veh	4.2	37.8
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	9.3	16.5
LnGrp Delay(d),s/veh	31.5	68.3
LnGrp LOS	С	E
Approach Vol, veh/h	1040	
Approach Delay, s/veh	52.4	
Approach LOS	D	
Timor		
Timer		

1.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	20	0	1	0	0	53	3	420	14	37	540	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	70	70	70	80	80	80	93	93	93	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	29	0	1	0	0	66	3	452	15	42	614	14

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1197	1171	614	1164	1164	459	614	0	0	467	0	0
Stage 1	698	698	-	466	466	-	-	-	-	-	-	-
Stage 2	499	473	-	698	698	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	163	193	492	171	194	602	965	-	-	1094	-	-
Stage 1	431	442	-	577	562	-	-	-	-	-	-	-
Stage 2	554	558	-	431	442	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	140	185	492	165	186	602	965	-	-	1094	-	-
Mov Cap-2 Maneuver	140	185	-	165	186	-	-	-	-	-	-	-
Stage 1	430	425	-	575	560	-	-	-	-	-	-	-
Stage 2	491	556	-	413	425	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	36.2	11.7	0.1	0.5
HCM LOS	E	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	965	-	-	145	602	1094	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.207	0.11	0.038	-	-	
HCM Control Delay (s)	8.7	-	-	36.2	11.7	8.4	-	-	
HCM Lane LOS	А	-	-	E	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.7	0.4	0.1	-	-	

Intersection												
Intersection Delay, s/veh	53.8											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	29	510	0	71	67	63	0	366	125	50
Peak Hour Factor	0.85	0.85	0.85	0.85	0.70	0.70	0.70	0.70	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	34	600	0	101	96	90	0	421	144	57
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		71.6				33.4				58.8		
HCM LOS		F				D				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	35%	100%	0%					
Vol Thru %		0%	71%	5%	22%	0%	08%					

Vol Left, %	100%	0%	0%	35%	100%	0%	
Vol Thru, %	0%	71%	5%	33%	0%	98%	
Vol Right, %	0%	29%	94%	31%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	366	175	541	201	108	240	
LT Vol	366	0	2	71	108	0	
Through Vol	0	125	29	67	0	236	
RT Vol	0	50	510	63	0	4	
Lane Flow Rate	421	201	636	287	148	329	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.491	1	0.729	0.398	0.829	
Departure Headway (Hd)	9.489	8.789	8.131	9.145	9.686	9.175	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	387	412	452	393	374	398	
Service Time	7.191	6.491	6.133	7.234	7.386	6.875	
HCM Lane V/C Ratio	1.088	0.488	1.407	0.73	0.396	0.827	
HCM Control Delay	77.5	19.7	71.6	33.4	18.6	43.4	
HCM Lane LOS	F	С	F	D	С	E	
HCM 95th-tile Q	11.9	2.6	12.9	5.7	1.9	7.6	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	108	236	4
Peak Hour Factor	0.73	0.73	0.73	0.73
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	148	323	5
Number of Lanes	0	1	1	0
	U		•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		ו 25 ד		
<u> </u>		35.7		
HCM LOS		E		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	608	2	0	1488	0	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	661	2	0	1617	0	1	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	661	0	1470	330	
Stage 1	-	-	-	-	661	-	
Stage 2	-	-	-	-	809	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	923	-	118	666	
Stage 1	-	-	-	-	475	-	
Stage 2	-	-	-	-	398	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	923	-	118	666	
Mov Cap-2 Maneuver	-	-	-	-	118	-	
Stage 1	-	-	-	-	475	-	
Stage 2	-	-	-	-	398	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	10.4	
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	666	-	-	923	-	
HCM Lane V/C Ratio	0.002	-	-	-	-	
HCM Control Delay (s)	10.4	-	-	0	-	
HCM Lane LOS	В	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	19	11	4	2	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	12	4	2	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	16	0	-	0	35	14	
Stage 1	-	-	-	-	14	-	
Stage 2	-	-	-	-	21	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1602	-	-	-	978	1066	
Stage 1	-	-	-	-	1009	-	
Stage 2	-	-	-	-	1002	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1602	-	-	-	978	1066	
Mov Cap-2 Maneuver	-	-	-	-	978	-	
Stage 1	-	-	-	-	1009	-	
Stage 2	-	-	-	-	1002	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1602	-	-	- 978
HCM Lane V/C Ratio	-	-	-	- 0.002
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{r}	4	-	•	•	Ť	5	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	200	268	284	71	934	122	365	221	158	405	477	
v/c Ratio	1.22	0.26	0.42	0.81	0.85	0.21	0.78	0.21	0.73	0.78	0.88	
Control Delay	180.8	23.3	5.1	98.3	36.5	5.6	49.5	23.2	58.5	40.1	40.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	180.8	23.3	5.1	98.3	36.5	5.6	49.5	23.2	58.5	40.1	40.0	
Queue Length 50th (ft)	~76	59	0	41	257	0	105	47	88	206	184	
Queue Length 95th (ft)	#125	80	36	#115	318	34	#152	70	#139	252	235	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	164	1139	717	88	1206	615	486	1158	230	594	600	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.22	0.24	0.40	0.81	0.77	0.20	0.75	0.19	0.69	0.68	0.80	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ኘኘ	††	1		۲	††	1	ሻሻ	∱ ⊅		۲	1
Volume (veh/h)	445	807	319	69	75	503	93	322	260	24	113	202
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1881	1881		1900	1881	1863	1881	1881	1900	1881	1863
Adj Flow Rate, veh/h	468	849	336		85	572	106	350	283	26	131	235
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86
Percent Heavy Veh, %	0	1	1		0	1	2	1	1	1	1	2
Cap, veh/h	516	1290	577		110	982	435	448	806	74	165	385
Arrive On Green	0.15	0.36	0.36		0.06	0.27	0.27	0.13	0.24	0.24	0.09	0.21
Sat Flow, veh/h	3510	3574	1599		1810	3574	1583	3476	3313	302	1792	1863
Grp Volume(v), veh/h	468	849	336		85	572	106	350	152	157	131	235
Grp Sat Flow(s), veh/h/ln	1755	1787	1599		1810	1787	1583	1738	1787	1828	1792	1863
Q Serve(g_s), s	9.8	14.9	12.7		3.5	10.3	3.9	7.3	5.3	5.3	5.4	8.6
Cycle Q Clear(g_c), s	9.8	14.9	12.7		3.5	10.3	3.9	7.3	5.3	5.3	5.4	8.6
Prop In Lane	1.00	14.7	1.00		1.00	10.5	1.00	1.00	0.0	0.17	1.00	0.0
Lane Grp Cap(c), veh/h	516	1290	577		110	982	435	448	435	445	165	385
V/C Ratio(X)	0.91	0.66	0.58		0.78	0.58	0.24	0.78	0.35	0.35	0.79	0.61
Avail Cap(c_a), veh/h	516	1518	679		121	1231	545	557	644	659	191	572
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.4	20.1	19.4		34.7	23.5	21.1	31.6	23.4	23.5	33.3	27.0
3 . 7	31.4 19.8	20.1	0.9		24.5	23.5	0.3	5.7	23.4 0.5	23.5	33.3 17.8	1.6
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	0.0	0.0	0.9		24.5	0.0	0.3	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.2	7.5	5.7		2.5	5.2	1.7	3.9	2.6	2.7	3.5	
· · ·	51.3	20.9	20.3		2.5 59.2	5.z 24.0	21.4	37.3	2.0	23.9	51.1	4.5 28.5
LnGrp Delay(d),s/veh	51.3 D	20.9 C	20.3 C				21.4 C	37.3 D	23.9 C	23.9 C	51.1 D	
LnGrp LOS	U		L		E	C	U	D		U	D	C
Approach Vol, veh/h		1653				763			659			602
Approach Delay, s/veh		29.4				27.6			31.0			34.3
Approach LOS		С				С			С			С
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	32.7	13.7	20.0	15.0	26.3	10.9	22.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	5.5	16.9	9.3	12.4	11.8	12.3	7.4	7.3				
Green Ext Time (p_c), s	0.0	8.8	0.4	3.1	0.0	8.2	0.0	4.0				
Intersection Summary												
HCM 2010 Ctrl Delay			30.1									
HCM 2010 LOS			С									
Notes												

Notes

User approved ignoring U-Turning movement.

	-
Movement	SBR
Land Configurations	
Volume (veh/h)	203
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	236
Adj No. of Lanes	230
Peak Hour Factor	0.86
Percent Heavy Veh, %	2
Cap, veh/h	327
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	236
Grp Sat Flow(s), veh/h/ln	1583
Q Serve(\underline{g}_s), s	10.4
Cycle Q Clear(g_c), s	10.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	327
V/C Ratio(X)	0.72
Avail Cap(c_a), veh/h	486
HCM Platoon Ratio	480
Upstream Filter(I)	1.00
	27.7
Uniform Delay (d), s/veh	3.0
Incr Delay (d2), s/veh	3.0 0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/In	0.0 4.8
	4.8 30.7
LnGrp Delay(d),s/veh	
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

Timer

3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	15	2	8	20	1	86	4	501	16	4	54	520	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	70	70	70	79	79	79	95	95	95	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	3	11	25	1	109	4	527	17	4	59	571	20

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1289	1252	571	1241	1243	540	571	0	0	653	544	0	0
Stage 1	690	699	-	544	544	-	-	-	-	-	-	-	-
Stage 2	599	553	-	697	699	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	141	172	520	152	174	542	1002	-	-	-	1025	-	-
Stage 1	435	442	-	523	519	-	-	-	-	-	-	-	-
Stage 2	488	514	-	431	442	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	112	171	520	146	173	542	1002	-	-	~ -15	~ -15	-	-
Mov Cap-2 Maneuver	112	171	-	146	173	-	-	-	-	-	-	-	-
Stage 1	433	442	-	521	517	-	-	-	-	-	-	-	-
Stage 2	387	512	-	419	442	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	35	21.3	0.1		
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1002	-	-	155	355	+	-	-	
HCM Lane V/C Ratio	0.004	-	-	0.23	0.382	-	-	-	
HCM Control Delay (s)	8.6	-	-	35	21.3	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.8	1.7	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	48.8											
Intersection LOS	40.0 E											
Intersection LOS	L											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	48	498	0	27	37	35	0	481	257	37
Peak Hour Factor	0.90	0.90	0.90	0.90	0.70	0.70	0.70	0.70	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	53	553	0	39	53	50	0	512	273	39
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Approach												
Opposing Approach		WB				EB				SB		_
Opposing Lanes						1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		63				14.7				52.2		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	27%	100%	0%					

Lane	INBLUI	INBLUZ	EBTUI	WBLUI	SRFUT	SBLUZ	
Vol Left, %	100%	0%	0%	27%	100%	0%	
Vol Thru, %	0%	87%	9%	37%	0%	98%	
Vol Right, %	0%	13%	91%	35%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	481	294	548	99	27	157	
LT Vol	481	0	2	27	27	0	
Through Vol	0	257	48	37	0	154	
RT Vol	0	37	498	35	0	3	
Lane Flow Rate	512	313	609	141	30	174	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.637	1	0.314	0.074	0.403	
Departure Headway (Hd)	7.915	7.328	6.325	7.983	8.836	8.323	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	461	491	572	451	406	433	
Service Time	5.669	5.081	4.385	6.029	6.575	6.062	
HCM Lane V/C Ratio	1.111	0.637	1.065	0.313	0.074	0.402	
HCM Control Delay	70.6	22.1	63	14.7	12.3	16.6	
HCM Lane LOS	F	С	F	В	В	С	
HCM 95th-tile Q	13	4.4	14.5	1.3	0.2	1.9	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	154	3
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	30	171	3
Number of Lanes	0	1	1	0
	U		•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		16		
<u> </u>				
HCM LOS		С		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	1569	2	0	1028	0	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Nvmt Flow	1705	2	0	1117	0	2	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1705	0	2264	853	
Stage 1	-	-	-	-	1705	-	
Stage 2	-	-	-	-	559	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	369	-	34	302	
Stage 1	-	-	-	-	132	-	
Stage 2	-	-	-	-	536	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	369	-	34	302	
Mov Cap-2 Maneuver	-	-	-	-	34	-	
Stage 1	-	-	-	-	132	-	
Stage 2	-	-	-	-	536	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	17	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	302	-	-	369	-	
HCM Lane V/C Ratio	0.007	-	-	-	-	
HCM Control Delay (s)	17	-	-	0	-	
HCM Lane LOS	С	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

1.1

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	19	19	4	6	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	21	4	7	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	25	0	-	0	44	23	
Stage 1	-	-	-	-	23	-	
Stage 2	-	-	-	-	21	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1589	-	-	-	967	1054	
Stage 1	-	-	-	-	1000	-	
Stage 2	-	-	-	-	1002	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1589	-	-	-	967	1054	
Mov Cap-2 Maneuver	-	-	-	-	967	-	
Stage 1	-	-	-	-	1000	-	
Stage 2	-	-	-	-	1002	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1589	-	-	- 967
HCM Lane V/C Ratio	-	-	-	- 0.007
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{F}	4	+	×	1	t	1	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	468	849	336	163	572	106	350	309	131	235	236	
v/c Ratio	0.91	0.71	0.44	1.65	0.63	0.20	0.67	0.35	0.69	0.62	0.46	
Control Delay	58.4	26.2	4.5	357.7	28.9	2.0	40.3	24.3	56.9	36.3	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.4	26.2	4.5	357.7	28.9	2.0	40.3	24.3	56.9	36.3	7.2	
Queue Length 50th (ft)	117	184	0	~117	127	0	82	61	62	104	0	
Queue Length 95th (ft)	#252	278	55	#261	192	9	#160	102	#162	176	48	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	517	1525	875	99	1237	655	558	1285	191	575	651	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.56	0.38	1.65	0.46	0.16	0.63	0.24	0.69	0.41	0.36	
Intersection Summary												

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	4	۶	-	$\mathbf{\hat{F}}$	F	4	-	×.	1	Ť	۲	1
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	≜ ⊅		۲
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.995		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3336	3374	1568	0	1805	3574	1583	3400	3522	0	1752
Flt Permitted		0.784				0.784			0.950			0.950
Satd. Flow (perm)	0	2753	3374	1568	0	1490	3574	1583	3400	3522	0	1752
Right Turn on Red				Yes				Yes			Yes	
Satd. Flow (RTOR)				284				122		4		
Link Speed (mph)			50				50			30		
Link Distance (ft)			437				631			452		
Travel Time (s) Intersection Summary			6.0				8.6			10.3		

Area Type:

Other

	Ļ	1
Lane Group	SBT	SBR
Lane Configurations	1	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1881	1599
Flt Permitted		
Satd. Flow (perm)	1881	1599
Right Turn on Red		Yes
Satd. Flow (RTOR)		139
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center

2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	۶	→	\mathbf{r}	∢	←	•	1	Ť	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۳.	↑		ሻ	↑	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.995			0.865			0.995				0.850
Flt Protected		0.954					0.950			0.950		
Satd. Flow (prot)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.954					0.950			0.950		
Satd. Flow (perm)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			2395			452	
Travel Time (s)		6.0			16.4			54.4			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٨	→	*	4	4	×	•	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	4		٦	4Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.873			0.958			0.957			0.998	
Flt Protected					0.983		0.950			0.950		
Satd. Flow (prot)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Flt Permitted					0.983		0.950			0.950		
Satd. Flow (perm)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2395			982			1162			698	
Travel Time (s)		54.4			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

	-	\mathbf{r}	4	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>††</u>	1		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3539	1583	0	3539	0	1611
Flt Permitted						
Satd. Flow (perm)	3539	1583	0	3539	0	1611
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	٨	-	-	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ب ا	4		Y	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.966			
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1799	0	1770	0
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1799	0	1770	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Appendix D:

Near-Term (2025) Traffic Volumes

El Dorado Hills Memory Care Center: Traffic Impact Analysis

Kimley **»Horn**

2025 Model Average Daily Traffic Volumes 16-0582 2H 136 of 427

Int 1 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Green Valley Rd

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

16-0582 2H 137 of 427

Int 2 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Embarcadero Dr / Cambria Way

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

16-0582 2H 138 of 427

Int 3 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
N/S Street:	El Dorado Hills Blvd
E/W Street:	Francisco Dr

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

Int 1 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Green Valley Rd

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 1 PM

Int 2 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Embarcadero Dr / Cambria Way

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 2 PM

16-0582 2H 141 of 427

Int 3 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions							
N/S Street:	El Dorado Hills Blvd							
E/W Street:	Francisco Dr							

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 3 PM

16-0582 2H 142 of 427

Appendix E:

Analysis Worksheets for Near-Term (2025) Conditions

	₫	۶	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	∱ î≽		٦
Volume (veh/h)	2	192	266	217	15	44	974	123	280	161	6	141
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1863		1872	1863	1863	1863	1863	1900	1863
Adj Flow Rate, veh/h		209	289	236		48	1059	134	304	175	7	153
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		197	1212	542		61	1130	506	385	1075	43	187
Arrive On Green		0.06	0.34	0.34		0.03	0.32	0.32	0.11	0.31	0.31	0.11
Sat Flow, veh/h		3442	3539	1583		1783	3539	1583	3442	3470	138	1774
Grp Volume(v), veh/h		209	289	236		48	1059	134	304	89	93	153
Grp Sat Flow(s),veh/h/ln		1721	1770	1583		1783	1770	1583	1721	1770	1838	1774
Q Serve(g_s), s		5.0	5.1	10.1		2.3	25.4	5.5	7.5	3.2	3.2	7.4
Cycle Q Clear(g_c), s		5.0	5.1	10.1		2.3	25.4	5.5	7.5	3.2	3.2	7.4
Prop In Lane		1.00	0.1	1.00		1.00	2011	1.00	1.00	0.2	0.08	1.00
Lane Grp Cap(c), veh/h		197	1212	542		61	1130	506	385	548	570	187
V/C Ratio(X)		1.06	0.24	0.44		0.79	0.94	0.26	0.79	0.16	0.16	0.82
Avail Cap(c_a), veh/h		197	1212	542		102	1146	513	473	557	578	223
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.2	20.6	22.2		41.9	28.9	22.1	37.8	21.9	21.9	38.3
Incr Delay (d2), s/veh		81.3	0.1	0.6		19.7	14.0	0.3	7.2	0.1	0.1	18.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.6	2.5	4.4		1.5	14.5	2.4	4.0	1.6	1.7	4.5
LnGrp Delay(d),s/veh		122.5	20.7	22.8		61.6	42.8	22.4	45.0	22.1	22.1	56.3
LnGrp LOS		F	C	C		E	D	С	D	С	C	E
Approach Vol, veh/h			734	<u> </u>			1241		5	486	•	
Approach Delay, s/veh			50.3				41.4			36.4		
Approach LOS			D				D			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.0	35.6	3 13.8	4 31.0	9.0	33.6	13.2	o 31.6				
	4.0	5.7	4.0			5.7	4.0					
Change Period (Y+Rc), s Max Green Setting (Gmax), s	4.0 5.0	28.3	4.0	4.5 26.5	4.0 5.0	28.3	4.0	4.5 27.5				
Max Q Clear Time (q_c+11) , s				26.5 27.0				27.5 5.2				
Green Ext Time (p_c), s	4.3 0.0	12.1 8.8	9.5 0.3	27.0	7.0 0.0	27.4 0.5	9.4 0.1	5.2 4.8				
		0.0	0.5	0.0	0.0	0.5	0.1	4.0				
Intersection Summary			A A . /									
HCM 2010 Ctrl Delay			44.6									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.
	-
Movement SBT	SBR
Lane Configurations	1
Volume (veh/h) 274	424
Number 4	14
Initial Q (Qb), veh 0	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj 1.00	1.00
Adj Sat Flow, veh/h/ln 1863	1863
Adj Flow Rate, veh/h 298	461
Adj No. of Lanes 1	1
Peak Hour Factor 0.92	0.92
Percent Heavy Veh, % 2	2
Cap, veh/h 565	480
Arrive On Green 0.30	0.30
Sat Flow, veh/h 1863	1583
Grp Volume(v), veh/h 298	461
Grp Sat Flow(s), veh/h/ln 1863	1583
Q Serve(g_s), s 11.6	25.0
Cycle Q Clear(g_c), s 11.6	25.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h 565	480
V/C Ratio(X) 0.53	0.96
Avail Cap(c_a), veh/h 565	480
HCM Platoon Ratio 1.00	1.00
Upstream Filter(I) 1.00	1.00
Uniform Delay (d), s/veh 25.3	29.9
Incr Delay (d2), s/veh 0.9	31.1
Initial Q Delay(d3), s/veh 0.0	0.0
%ile BackOfQ(50%),veh/ln 6.1	15.0
LnGrp Delay(d),s/veh 26.2	61.0
LnGrp LOS C	E
Approach Vol, veh/h 912	
Approach Delay, s/veh 48.8	
Approach LOS D	
Timer	

1.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	23	0	0	0	0	54	1	370	12	38	484	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	0	0	0	0	59	1	402	13	41	526	14

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1049	1026	526	1020	1020	409	526	0	0	415	0	0
Stage 1	609	609	-	411	411	-	-	-	-	-	-	-
Stage 2	440	417	-	609	609	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	205	235	552	215	237	642	1041	-	-	1144	-	-
Stage 1	482	485	-	618	595	-	-	-	-	-	-	-
Stage 2	596	591	-	482	485	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	181	226	552	209	228	642	1041	-	-	1144	-	-
Mov Cap-2 Maneuver	181	226	-	209	228	-	-	-	-	-	-	-
Stage 1	482	468	-	617	594	-	-	-	-	-	-	-
Stage 2	541	590	-	465	468	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	28.1	11.2	0	0.6
HCM LOS	D	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1041	-	-	181	642	1144	-	-
HCM Lane V/C Ratio	0.001	-	-	0.138	0.091	0.036	-	-
HCM Control Delay (s)	8.5	-	-	28.1	11.2	8.3	-	-
HCM Lane LOS	А	-	-	D	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.5	0.3	0.1	-	-

Intersection												
Intersection Delay, s/veh	39.8											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	28	454	0	80	60	61	0	317	117	62
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	2	30	493	0	87	65	66	0	345	127	67
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		65.6				22.8				34		
HCM LOS		F				С				D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				
Vol Left, %		100%	0%	7%	0%	40%	100%	0%				

Laile	NDLIII	NDLIIZ	LDLIII	EDLIIZ	VVDLIII	SDLITT	SDLIIZ	
Vol Left, %	100%	0%	7%	0%	40%	100%	0%	
Vol Thru, %	0%	65%	93%	0%	30%	0%	97%	
Vol Right, %	0%	35%	0%	100%	30%	0%	3%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	317	179	30	454	201	102	228	
LT Vol	317	0	2	0	80	102	0	
Through Vol	0	117	28	0	60	0	222	
RT Vol	0	62	0	454	61	0	6	
Lane Flow Rate	345	195	33	493	218	111	248	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	0.841	0.435	0.076	1	0.552	0.282	0.594	
Departure Headway (Hd)	8.789	8.047	8.391	7.633	9.102	9.153	8.635	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	413	448	427	474	398	394	419	
Service Time	6.527	5.785	6.147	5.389	7.144	6.895	6.376	
HCM Lane V/C Ratio	0.835	0.435	0.077	1.04	0.548	0.282	0.592	
HCM Control Delay	43.7	16.9	11.8	69.2	22.8	15.5	23.3	
HCM Lane LOS	E	С	В	F	С	С	С	
HCM 95th-tile Q	8	2.2	0.2	13.3	3.2	1.1	3.7	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	102	222	6
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	111	241	7
Number of Lanes	0	1	1	0
	Ŭ	•	•	Ŭ
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		20.9		
HCM LOS		C		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{i}	∢	-	×.	•	Ť	\	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	211	289	236	64	1059	134	304	182	153	298	461	
v/c Ratio	1.24	0.23	0.33	0.58	0.92	0.22	0.67	0.19	0.71	0.60	0.88	
Control Delay	184.8	22.1	4.7	63.4	42.4	5.3	44.3	23.1	56.6	32.7	40.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	184.8	22.1	4.7	63.4	42.4	5.3	44.3	23.1	56.6	32.7	40.6	
Queue Length 50th (ft)	~80	64	0	36	307	0	86	38	85	142	175	
Queue Length 95th (ft)	#151	96	50	#96	#441	39	128	64	#174	223	#341	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	170	1243	709	110	1184	618	487	1147	230	583	589	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	0.23	0.33	0.58	0.89	0.22	0.62	0.16	0.67	0.51	0.78	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{r}	F	4	+	×	1	Ť	1	1	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ካካ	††	1		۲	††	1	ካካ	≜ †⊳		۲	1
Volume (veh/h)	503	964	347	65	85	618	111	378	292	31	134	217
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863		1879	1863	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	547	1048	377		92	672	121	411	317	34	146	236
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2		2	2	2	2	2	2	2	2
Cap, veh/h	460	1295	579		109	1037	464	487	824	88	172	392
Arrive On Green	0.13	0.37	0.37		0.06	0.29	0.29	0.14	0.26	0.26	0.10	0.21
Sat Flow, veh/h	3442	3539	1583		1789	3539	1583	3442	3228	344	1774	1863
Grp Volume(v), veh/h	547	1048	377		92	672	121	411	173	178	146	236
1 17												
Grp Sat Flow(s),veh/h/ln	1721	1770	1583		1789	1770	1583	1721	1770	1802	1774	1863
Q Serve(g_s), s	11.0	22.0	16.3		4.2	13.6	4.8	9.6	6.6	6.7	6.7	9.4
Cycle Q Clear(g_c), s	11.0	22.0	16.3		4.2	13.6	4.8	9.6	6.6	6.7	6.7	9.4
Prop In Lane	1.00	1005	1.00		1.00	1007	1.00	1.00	150	0.19	1.00	000
Lane Grp Cap(c), veh/h	460	1295	579		109	1037	464	487	452	460	172	392
V/C Ratio(X)	1.19	0.81	0.65		0.85	0.65	0.26	0.84	0.38	0.39	0.85	0.60
Avail Cap(c_a), veh/h	460	1367	611		109	1109	496	502	580	591	172	520
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.7	23.5	21.7		38.3	25.4	22.3	34.5	25.3	25.3	36.6	29.4
Incr Delay (d2), s/veh	105.3	3.6	2.3		42.9	1.2	0.3	12.2	0.5	0.5	30.5	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	11.9	11.3	7.5		3.4	6.8	2.1	5.4	3.3	3.4	4.7	5.0
LnGrp Delay(d),s/veh	141.0	27.1	24.0		81.2	26.6	22.6	46.6	25.8	25.9	67.1	30.9
LnGrp LOS	F	С	С		F	С	С	D	С	С	E	С
Approach Vol, veh/h		1972				885			762			636
Approach Delay, s/veh		58.1				31.7			37.1			41.2
Approach LOS		E				С			D			D
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.0	35.8	15.7	21.9	15.0	29.8	12.0	25.5				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1) , s	6.2	24.0	11.6	14.4	13.0	15.6	8.7	8.7				
Green Ext Time (p_c), s	0.0	6.2	0.1	2.9	0.0	7.7	0.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			46.3									
HCM 2010 LOS			40.3 D									
			U									
Notes												

User approved ignoring U-Turning movement.

	-
Movement	SBR
Land Configurations	
Volume (veh/h)	234
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Peu-Bike Auj(A_pb1) Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Sat Flow, ven/h/h	254
Adj No. of Lanes	204
Peak Hour Factor	0.92
	0.92
Percent Heavy Veh, %	334
Cap, veh/h	
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	254
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	12.4
Cycle Q Clear(g_c), s	12.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	334
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	442
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.6
Incr Delay (d2), s/veh	5.4
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	5.9
LnGrp Delay(d),s/veh	36.0
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timor	

Timer

2.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Movement	EDL	EDI	EDK	VVDL	VVDI	VVDK	INDL	INDI	NDK	SDU	JDL	SDI	JDK
Vol, veh/h	15	2	8	18	1	91	4	588	15	7	57	567	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	2	2	2
Mvmt Flow	16	2	9	20	1	99	4	639	16	8	62	616	20

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1446	1419	616	1402	1411	655	616	0	0	754	655	0	0
Stage 1	740	755	-	656	656	-	-	-	-	-	-	-	-
Stage 2	706	664	-	746	755	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	137	491	117	138	466	964	-	-	-	932	-	-
Stage 1	409	417	-	454	462	-	-	-	-	-	-	-	-
Stage 2	427	458	-	405	417	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	85	136	491	113	137	466	964	-	-	~ -9	~ -9	-	-
Mov Cap-2 Maneuver	85	136	-	113	137	-	-	-	-	-	-	-	-
Stage 1	407	417	-	452	460	-	-	-	-	-	-	-	-
Stage 2	334	456	-	396	417	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	43.6	24.3	0.1		
HCM LOS	Е	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	964	-	-	120	304	+	-	-	
HCM Lane V/C Ratio	0.005	-	-	0.226	0.393	-	-	-	
HCM Control Delay (s)	8.8	-	-	43.6	24.3	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.8	1.8	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 3)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	46.1											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	38	76	479	0	4	59	40	0	499	188	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	41	83	521	0	4	64	43	0	542	204	5
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		49.5				14.2				55.4		
HCM LOS		E				В				F		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				
		1000/	00/	220/	00/	40/	1000/	00/				

Lane	NRLUI	INBLN2	EBTUI	EBLN2	WBLUI	SBLUI	SBLN2	
Vol Left, %	100%	0%	33%	0%	4%	100%	0%	
Vol Thru, %	0%	97%	67%	0%	57%	0%	64%	
Vol Right, %	0%	3%	0%	100%	39%	0%	36%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	499	193	114	479	103	27	136	
LT Vol	499	0	38	0	4	27	0	
Through Vol	0	188	76	0	59	0	87	
RT Vol	0	5	0	479	40	0	49	
Lane Flow Rate	542	210	124	521	112	29	148	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	1	0.431	0.261	0.973	0.257	0.071	0.329	
Departure Headway (Hd)	7.923	7.391	7.591	6.726	8.257	8.767	8.012	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	456	485	473	541	434	408	448	
Service Time	5.699	5.167	5.337	4.473	6.326	6.538	5.783	
HCM Lane V/C Ratio	1.189	0.433	0.262	0.963	0.258	0.071	0.33	
HCM Control Delay	70.7	15.7	13	58.2	14.2	12.2	14.7	
HCM Lane LOS	F	С	В	F	В	В	В	
HCM 95th-tile Q	13	2.1	1	13.1	1	0.2	1.4	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	87	49
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	29	95	53
Number of Lanes	0	1	1	0
	Ū	•	•	Ū
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		14.3		
HCM LOS		В		
		D		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	1	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	547	1048	377	163	672	121	411	351	146	236	254	
v/c Ratio	1.16	0.81	0.46	1.77	0.66	0.21	0.80	0.40	0.82	0.64	0.52	
Control Delay	127.8	30.0	4.4	418.8	29.3	2.7	48.6	26.0	74.8	38.7	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	127.8	30.0	4.4	418.8	29.3	2.7	48.6	26.0	74.8	38.7	10.4	
Queue Length 50th (ft)	~182	248	0	~131	156	0	109	77	77	115	15	
Queue Length 95th (ft)	#308	367	57	#269	237	20	#204	115	#199	187	76	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	472	1407	856	92	1142	622	515	1185	177	536	612	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.16	0.74	0.44	1.77	0.59	0.19	0.80	0.30	0.82	0.44	0.42	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٨	→	\mathbf{r}	4	+	×	•	Ť	1	*	ŧ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	<u>††</u>	1	۲	<u>††</u>	1	ሻሻ	∱ ₽		۲	↑	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	290		210	200		450	200		0	185		0
Storage Lanes	2		0	1		1	2		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850					0.987				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	3539	1583	1770	3539	1863	3433	3493	0	1770	1863	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	3433	3539	1583	1770	3539	1863	3433	3493	0	1770	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			289					12				228
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		437			631			452			543	
Travel Time (s)		6.0			8.6			10.3			12.3	
Intersection Summary												

Area Type:

Other

El Dorado Hills Memory Care Center 2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	٦	-	\rightarrow	1	-	•	1	Ť	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		٦	†		۲	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.962			0.884			0.996				0.850
Flt Protected		0.969			0.994		0.950			0.950		
Satd. Flow (prot)	0	1736	0	0	1637	0	1770	1855	0	1770	1863	1583
Flt Permitted		0.969			0.994		0.950			0.950		
Satd. Flow (perm)	0	1736	0	0	1637	0	1770	1855	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٦	-	\mathbf{r}	4	-	•	1	Ť	1	\	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		د	1		\$		٦	4Î		٦	¢Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850		0.947			0.996			0.945	
Flt Protected		0.984			0.998		0.950			0.950		
Satd. Flow (prot)	0	1833	1583	0	1760	0	1770	1855	0	1770	1760	0
Flt Permitted		0.984			0.998		0.950			0.950		
Satd. Flow (perm)	0	1833	1583	0	1760	0	1770	1855	0	1770	1760	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		1943			982			1162			698	
Travel Time (s)		44.2			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

	->	\mathbf{F}	∢	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>††</u>	1		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected						
Satd. Flow (prot)	3539	1863	0	3539	0	1863
Flt Permitted						
Satd. Flow (perm)	3539	1863	0	3539	0	1863
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	۶	+	←	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		د	4Î		۲	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected						
Satd. Flow (prot)	0	1863	1863	0	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1863	1863	0	1863	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Appendix F:

Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions

	1	۶	-	\mathbf{F}	F	1	-	×.	1	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	∱ î⊱		ሻ
Volume (veh/h)	2	192	267	217	15	46	974	123	281	161	6	141
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1863		1872	1863	1863	1863	1863	1900	1863
Adj Flow Rate, veh/h		209	290	236		50	1059	134	305	175	7	153
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		197	1206	540		64	1130	506	386	1075	43	187
Arrive On Green		0.06	0.34	0.34		0.04	0.32	0.32	0.11	0.31	0.31	0.11
Sat Flow, veh/h		3442	3539	1583		1783	3539	1583	3442	3470	138	1774
Grp Volume(v), veh/h		209	290	236		50	1059	134	305	89	93	153
Grp Sat Flow(s), veh/h/ln		1721	1770	1583		1783	1770	1583	1721	1770	1838	1774
Q Serve(g_s), s		5.0	5.1	10.1		2.4	25.4	5.5	7.5	3.2	3.2	7.4
Cycle Q Clear(g_c), s		5.0	5.1	10.1		2.4	25.4 25.4	5.5	7.5	3.2	3.2	7.4
			D. I	1.00			20.4			3.Z	3.2 0.08	
Prop In Lane		1.00	100/			1.00	1120	1.00	1.00	F 40		1.00
Lane Grp Cap(c), veh/h		197	1206	540		64	1130	506	386	549	570	187
V/C Ratio(X)		1.06	0.24	0.44		0.79	0.94	0.27	0.79	0.16	0.16	0.82
Avail Cap(c_a), veh/h		197	1206	540		102	1146	512	472	557	578	223
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.2	20.7	22.3		41.8	28.9	22.1	37.8	21.9	21.9	38.3
Incr Delay (d2), s/veh		81.4	0.1	0.6		18.8	14.0	0.3	7.2	0.1	0.1	18.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		4.6	2.5	4.5		1.5	14.6	2.4	4.0	1.6	1.7	4.5
LnGrp Delay(d),s/veh		122.6	20.8	22.9		60.6	42.9	22.4	45.0	22.1	22.1	56.3
LnGrp LOS		F	С	С		E	D	С	D	С	С	E
Approach Vol, veh/h			735				1243			487		
Approach Delay, s/veh			50.4				41.4			36.4		
Approach LOS			D				D			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	35.5	13.8	31.0	9.0	33.6	13.2	31.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (q_c+I1), s	4.4	12.1	9.5	27.0	7.0	27.4	9.4	5.2				
Green Ext Time (p_c), s	0.0	8.8	0.3	0.0	0.0	0.5	0.1	4.8				
Intersection Summary												
HCM 2010 Ctrl Delay			44.7									
HCM 2010 LOS			нч.7 D									
Notes			U									

User approved ignoring U-Turning movement.

	Ļ	1
Movement	SBT	SBR
Lane Configurations	1	1
Volume (veh/h)	274	424
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	298	461
Adj No. of Lanes	1	1
Peak Hour Factor	0.92	0.92
Percent Heavy Veh, %	2	2
Cap, veh/h	565	480
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1863	1583
Grp Volume(v), veh/h	298	461
Grp Sat Flow(s),veh/h/ln	1863	1583
Q Serve(g_s), s	11.6	25.0
Cycle Q Clear(g_c), s	11.6	25.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	565	480
V/C Ratio(X)	0.53	0.96
Avail Cap(c_a), veh/h	565	480
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	25.3	30.0
Incr Delay (d2), s/veh	0.9	31.1
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	6.1	15.0
LnGrp Delay(d),s/veh	26.2	61.1
LnGrp LOS	С	E
Approach Vol, veh/h	912	
Approach Delay, s/veh	48.9	
Approach LOS	D	
Timer		

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	24	0	1	0	0	54	3	370	12	38	484	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	0	1	0	0	59	3	402	13	41	526	16

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1054	1031	526	1024	1024	409	526	0	0	415	0	0
Stage 1	609	609	-	415	415	-	-	-	-	-	-	-
Stage 2	445	422	-	609	609	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	204	233	552	214	235	642	1041	-	-	1144	-	-
Stage 1	482	485	-	615	592	-	-	-	-	-	-	-
Stage 2	592	588	-	482	485	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	180	224	552	207	226	642	1041	-	-	1144	-	-
Mov Cap-2 Maneuver	180	224	-	207	226	-	-	-	-	-	-	-
Stage 1	481	468	-	613	590	-	-	-	-	-	-	-
Stage 2	536	586	-	464	468	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	27.8	11.2	0.1	0.6
HCM LOS	D	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1041	-	-	185	642	1144	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.147	0.091	0.036	-	-	
HCM Control Delay (s)	8.5	-	-	27.8	11.2	8.3	-	-	
HCM Lane LOS	А	-	-	D	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.5	0.3	0.1	-	-	

Intersection												
Intersection Delay, s/veh	40											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	28	455	0	80	60	61	0	319	117	62
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	2	30	495	0	87	65	66	0	347	127	67
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		65.7				22.9				34.6		
HCM LOS		F				С				D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				
Vol Left, %		100%	0%	7%	0%	40%	100%	0%				
Vol Thru, %		0%	65%	93%	0%	30%	0%	97%				
Vol Right, %		0%	35%	0%	100%	30%	0%	3%				
Sign Control		Stop										
Traffic Vol by Lane		319	179	30	455	201	102	228				
LT Vol		319	0	2	0	80	102	0				

Sign Control	Stop							
Traffic Vol by Lane	319	179	30	455	201	102	228	
LT Vol	319	0	2	0	80	102	0	
Through Vol	0	117	28	0	60	0	222	
RT Vol	0	62	0	455	61	0	6	
Lane Flow Rate	347	195	33	495	218	111	248	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	0.847	0.435	0.076	1	0.553	0.282	0.595	
Departure Headway (Hd)	8.793	8.051	8.402	7.644	9.114	9.161	8.643	
Convergence, Y/N	Yes							
Сар	413	448	426	475	398	392	419	
Service Time	6.53	5.788	6.157	5.399	7.154	6.903	6.384	
HCM Lane V/C Ratio	0.84	0.435	0.077	1.042	0.548	0.283	0.592	
HCM Control Delay	44.6	16.9	11.9	69.3	22.9	15.5	23.4	
HCM Lane LOS	E	С	В	F	С	С	С	
HCM 95th-tile Q	8.1	2.2	0.2	13.2	3.2	1.1	3.7	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	102	222	6
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	111	241	7
Number of Lanes	0	1	1	0
	Ū	•	•	Ū
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		21		
HCM LOS		C		
		C		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	677	2	0	1681	0	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	736	2	0	1827	0	1	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	736	0	1650	368	
Stage 1	-	-	-	-	736	-	
Stage 2	-	-	-	-	914	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	865	-	90	629	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	351	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	865	-	90	629	
Mov Cap-2 Maneuver	-	-	-	-	90	-	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	351	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	10.7	
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	629	-	-	865	-	
HCM Lane V/C Ratio	0.002	-	-	-	-	
HCM Control Delay (s)	10.7	-	-	0	-	
HCM Lane LOS	В	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	23	14	4	2	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
eh in Median Storage, #	-	0	0	-	0	-	
irade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
/wmt Flow	0	25	15	4	2	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	20	0	-	0	42	17	
Stage 1	-	-	-	-	17	-	
Stage 2	-	-	-	-	25	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1596	-	-	-	969	1062	
Stage 1	-	-	-	-	1006	-	
Stage 2	-	-	-	-	998	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1596	-	-	-	969	1062	
Mov Cap-2 Maneuver	-	-	-	-	969	-	
Stage 1	-	-	-	-	1006	-	
Stage 2	-	-	-	-	998	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1596	-	-	- 969
HCM Lane V/C Ratio	-	-	-	- 0.002
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{F}	4	←	×.	1	1	1	Ļ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	211	290	236	66	1059	134	305	182	153	298	461	
v/c Ratio	1.24	0.23	0.33	0.60	0.92	0.22	0.68	0.19	0.71	0.60	0.88	
Control Delay	184.8	22.2	4.7	64.9	42.4	5.3	44.4	23.1	56.6	32.7	40.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	184.8	22.2	4.7	64.9	42.4	5.3	44.4	23.1	56.6	32.7	40.6	
Queue Length 50th (ft)	~80	64	0	38	307	0	86	38	85	142	175	
Queue Length 95th (ft)	#151	97	50	#100	#441	39	129	64	#174	223	#341	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	170	1243	709	110	1184	618	487	1147	230	583	589	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	0.23	0.33	0.60	0.89	0.22	0.63	0.16	0.67	0.51	0.78	
Intersection Summary												

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	→	\mathbf{F}	F	4	-	A.	1	1	1	1	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ኘካ	<u>††</u>	1		۲.	<u>††</u>	1	ኘሻ	∱ ⊅		۲.	1
Volume (veh/h)	503	966	347	65	87	618	111	381	292	31	134	217
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863		1878	1863	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	547	1050	377		95	672	121	414	317	34	146	236
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2		2	2	2	2	2	2	2	2
Cap, veh/h	459	1295	579		108	1037	464	490	826	88	172	392
Arrive On Green	0.13	0.37	0.37		0.06	0.29	0.29	0.14	0.26	0.26	0.10	0.21
Sat Flow, veh/h	3442	3539	1583		1789	3539	1583	3442	3228	344	1774	1863
Grp Volume(v), veh/h	547	1050	377		95	672	121	414	173	178	146	236
Grp Sat Flow(s), veh/h/ln	1721	1770	1583		1789	1770	1583	1721	1770	1802	1774	1863
Q Serve(g_s), s	11.0	22.1	16.3		4.3	13.7	4.8	9.7	6.6	6.7	6.7	9.4
Cycle Q Clear(g_c), s	11.0	22.1	16.3		4.3	13.7	4.8	9.7	6.6	6.7	6.7	9.4
Prop In Lane	1.00	22.1	1.00		1.00	10.7	1.00	1.00	0.0	0.19	1.00	7.1
Lane Grp Cap(c), veh/h	459	1295	579		108	1037	464	490	453	461	172	392
V/C Ratio(X)	1.19	0.81	0.65		0.88	0.65	0.26	0.85	0.38	0.39	0.85	0.60
Avail Cap(c_a), veh/h	459	1365	611		108	1107	495	501	579	590	172	519
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.7	23.6	21.8		38.4	25.4	22.3	34.5	25.3	25.3	36.6	29.4
Incr Delay (d2), s/veh	106.0	3.7	21.0		49.8	1.2	0.3	12.4	0.5	0.5	30.8	1.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.9	11.4	7.5		3.6	6.8	2.1	5.4	3.3	3.4	4.8	5.0
LnGrp Delay(d),s/veh	141.8	27.2	24.1		88.3	26.7	22.6	46.9	25.8	25.9	67.4	30.9
LnGrp LOS	F	C	C		60.5 F	C	C	-10.7 D	20.0 C	C	E	C
Approach Vol, veh/h		1974	0			888	0	U	765	0	L	636
Approach Delay, s/veh		58.4				32.7			37.3			41.4
Approach LOS		50.4 E				52.7 C			57.5 D			41.4 D
Approach 203						U			D			
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.0	35.9	15.7	21.9	15.0	29.9	12.0	25.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+l1), s	6.3	24.1	11.7	14.4	13.0	15.7	8.7	8.7				
Green Ext Time (p_c), s	0.0	6.1	0.1	2.9	0.0	7.7	0.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			46.7									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	-
Movement	SBR
Land Configurations	1
Volume (veh/h)	234
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	254
Adj No. of Lanes	1
Peak Hour Factor	0.92
Percent Heavy Veh, %	2
Cap, veh/h	333
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	254
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	12.4
Cycle Q Clear(g_c), s	12.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	333
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	442
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.6
Incr Delay (d2), s/veh	5.5
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	5.9
LnGrp Delay(d),s/veh	36.1
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

Timer

2.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	18	2	11	18	1	91	6	588	15	7	57	567	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	2	2	2
Mvmt Flow	20	2	12	20	1	99	7	639	16	8	62	616	22

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1450	1423	616	1407	1415	655	616	0	0	754	655	0	0
Stage 1	740	755	-	660	660	-	-	-	-	-	-	-	-
Stage 2	710	668	-	747	755	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	136	491	117	137	466	964	-	-	-	932	-	-
Stage 1	409	417	-	452	460	-	-	-	-	-	-	-	-
Stage 2	424	456	-	405	417	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	85	135	491	112	136	466	964	-	-	~ -9	~ -9	-	-
Mov Cap-2 Maneuver	85	135	-	112	136	-	-	-	-	-	-	-	-
Stage 1	406	417	-	449	457	-	-	-	-	-	-	-	-
Stage 2	331	453	-	393	417	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	44.1	24.4	0.1		
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	NBLn1	SBL	SBT	SBR	
Capacity (veh/h)	964	-	-	125	303	+	-	-	
HCM Lane V/C Ratio	0.007	-	-	0.27	0.395	-	-	-	
HCM Control Delay (s)	8.8	-	-	44.1	24.4	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	1	1.8	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	46.6											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	38	76	482	0	4	59	40	0	501	188	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	41	83	524	0	4	64	43	0	545	204	5
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		50.7				14.2				55.5		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	33%	0%	4%	100%	0%	
Vol Thru, %	0%	97%	67%	0%	57%	0%	64%	
Vol Right, %	0%	3%	0%	100%	39%	0%	36%	
Sign Control	Stop							
Traffic Vol by Lane	501	193	114	482	103	27	136	
LT Vol	501	0	38	0	4	27	0	
Through Vol	0	188	76	0	59	0	87	
RT Vol	0	5	0	482	40	0	49	
Lane Flow Rate	545	210	124	524	112	29	148	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	1	0.431	0.261	0.979	0.257	0.072	0.33	
Departure Headway (Hd)	7.936	7.404	7.592	6.728	8.268	8.78	8.025	
Convergence, Y/N	Yes							
Сар	457	485	473	540	433	407	446	
Service Time	5.712	5.179	5.339	4.475	6.337	6.548	5.793	
HCM Lane V/C Ratio	1.193	0.433	0.262	0.97	0.259	0.071	0.332	
HCM Control Delay	70.8	15.7	13	59.6	14.2	12.2	14.7	
HCM Lane LOS	F	С	В	F	В	В	В	
HCM 95th-tile Q	13	2.1	1	13.3	1	0.2	1.4	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	87	49
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	29	95	53
Number of Lanes	0	1	1	0
	U	•	•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		14.3		
HCM LOS		В		
		D		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	1814	2	0	1233	0	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1972	2	0	1340	0	2	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1972	0	2642	986	
Stage 1	-	-	-	-	1972	-	
Stage 2	-	-	-	-	670	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	290	-	19	247	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	470	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	290	-	19	247	
Mov Cap-2 Maneuver	-	-	-	-	19	-	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	470	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	19.7	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	247	-	-	290	-	
HCM Lane V/C Ratio	0.009	-	-	-	-	
HCM Control Delay (s)	19.7	-	-	0	-	
HCM Lane LOS	С	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	25	23	4	6	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	27	25	4	7	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	29	0	-	0	54	27	
Stage 1	-	-	-	-	27	-	
Stage 2	-	-	-	-	27	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1584	-	-	-	954	1048	
Stage 1	-	-	-	-	996	-	
Stage 2	-	-	-	-	996	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1584	-	-	-	954	1048	
Mov Cap-2 Maneuver	-	-	-	-	954	-	
Stage 1	-	-	-	-	996	-	
Stage 2	-	-	-	-	996	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.8	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1584	-	-	- 954
HCM Lane V/C Ratio	-	-	-	- 0.007
HCM Control Delay (s)	0	-	-	- 8.8
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{F}	¥	-	×.	1	1	1	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	547	1050	377	166	672	121	414	351	146	236	254	
v/c Ratio	1.16	0.82	0.46	1.82	0.66	0.21	0.81	0.40	0.82	0.64	0.52	
Control Delay	128.3	30.1	4.4	434.1	29.3	2.7	48.9	26.0	74.8	38.7	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	128.3	30.1	4.4	434.1	29.3	2.7	48.9	26.0	74.8	38.7	10.4	
Queue Length 50th (ft)	~182	249	0	~135	156	0	110	77	77	115	15	
Queue Length 95th (ft)	#308	368	57	#274	237	20	#205	115	#199	187	76	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	471	1406	856	91	1140	621	514	1184	177	535	611	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.16	0.75	0.44	1.82	0.59	0.19	0.81	0.30	0.82	0.44	0.42	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	_	۶	-	\mathbf{r}	F	∢	←	•	•	Ť	*	\
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ካካ	∱ ₽		٦
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.994		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3434	3539	1583	0	1778	3539	1583	3433	3518	0	1770
Flt Permitted		0.800							0.950			0.950
Satd. Flow (perm)	0	2892	3539	1583	0	1872	3539	1583	3433	3518	0	1770
Right Turn on Red				Yes				Yes			Yes	
Satd. Flow (RTOR)				236				134		5		
Link Speed (mph)			50				50			30		
Link Distance (ft)			437				631			452		
Travel Time (s)			6.0				8.6			10.3		
Intersection Summary												

Area Type:

Other

	Ļ	1
Lane Group	SBT	SBR
Lane Configurations	1	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1863	1583
Flt Permitted		
Satd. Flow (perm)	1863	1583
Right Turn on Red		Yes
Satd. Flow (RTOR)		137
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center 2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	۶	→	\mathbf{r}	∢	←	•	•	Ť	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >			4 >		٦	↑		ሻ	†	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.995			0.865			0.995				0.850
Flt Protected		0.954					0.950			0.950		
Satd. Flow (prot)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.954					0.950			0.950		
Satd. Flow (perm)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٨	-	\mathbf{r}	4	-	×.	•	Ť	*	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1		\$		٦	4Î		٦	4Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850		0.959			0.948			0.996	
Flt Protected		0.997			0.980		0.950			0.950		
Satd. Flow (prot)	0	1857	1583	0	1751	0	1770	1766	0	1770	1855	0
Flt Permitted		0.997			0.980		0.950			0.950		
Satd. Flow (perm)	0	1857	1583	0	1751	0	1770	1766	0	1770	1855	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2033			982			1162			698	
Travel Time (s)		46.2			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other
El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

	-+	\mathbf{r}	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	††	۴		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3539	1583	0	3539	0	1611
Flt Permitted						
Satd. Flow (perm)	3539	1583	0	3539	0	1611
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	٨	-	-	•	×	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		با	4î			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.972			
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1811	0	1770	0
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1811	0	1770	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Kimley-Horn Lanes and Geometrics Synchro 9 Report Page 5

Appendix G:

Traffic Signal Warrant Worksheets

Default Scenario Thu Jun 4, 2015 15:35:55 Page 1-1

Scenario:	Default	Scenario Report Scenario
Command:	Default	Command
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Default Scenario	Thu Jun 4, 2015 15:35:55	Page 2-1
	Signal Warrant Summary Report	
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Intersection 2 # 3 Intersection 3</pre>	No / No Yes	??? / ??? ??? / ???

Default Scenario Thu Jun 4, 2015 15:35:55 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 1
 0
 1
 0
 0
 0
 0
 0
 1
 Initial Vol:1420143754010190000ApproachDel:xxxxxxxxxxxx27.511.2 53 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.1] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=19] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1094] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=53] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1094] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants). The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond

the scope of this software, may yield different results.

Thu Jun 4, 2015 15:35:55 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 1
 0
 1
 0
 0
 0
 0
 1

 Initial Vol:
 1
 420
 14
 37
 540
 10
 19
 0
 0
 0
 53

 Major Street Volume: 1022 Minor Approach Volume: 53 Minor Approach Volume: Minor Approach Volume Threshold: 277 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario	Thu Jun 4, 2015 15:35:55	Page 3-3
	olume Signal Warrant Report [Urban]	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *
<pre>Intersection #3 Intersectior ************************************</pre>	1 3 ************************************	* * * * * * * * * * * *
Base Volume Alternative: Pea	ak Hour Warrant Met -	
•	South Bound East Bound W	
	L - T - R L - T - R L	
	•	
Control: Stop Sign	Stop Sign Stop Sign S	top Sign
Lanes: 1 0 0 1 0	1 0 0 1 0 0 0 1! 0 0 0	0 1! 0 0
	0 108 236 4 2 29 509 71	
	•	
Major Street Volume:	887	
Minor Approach Volume:	540	
Minor Approach Volume Thresh	nold: 326	

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default ScenarioThu Jun 4, 2015 15:39:59Page 1-1

	Scenario Report	
Scenario:	Default Scenario	
Command:	Default Command	
Volume:	Default Volume	
Geometry:	Default Geometry	
Impact Fee:	Default Impact Fee	
Trip Generation:	Default Trip Generation	
Trip Distribution:	Default Trip Distribution	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Default Scenario	Thu Jun 4, 2015 15:39:59	Page 2-1
	Signal Warrant Summary Report	
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Intersection 2 # 3 Intersection 3</pre>	No / No Yes	??? / ??? ???

Default Scenario Thu Jun 4, 2015 15:39:59 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 < Initial Vol:2 5011654 52016122520186ApproachDel:xxxxxxxxxxxx35.721.5 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=19] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1235] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.6] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=107] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1235] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:39:59 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control:UncontrolledUncontrolledStop SignStop SignLanes:00101000 Major Street Volume: 1109 Minor Approach Volume: 107 Minor Approach Volume: Minor Approach Volume Threshold: 249 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario	Thu Jun 4, 2015 15:39:59	Page 3-3
	olume Signal Warrant Report [Urban]	
* * * * * * * * * * * * * * * * * * * *	***************************************	*****
<pre>Intersection #3 Intersectio ************************************</pre>	n 3 ************************************	* * * * * * * * * * * *
Base Volume Alternative: Pe	ak Hour Warrant Met -	
•	South Bound East Bound We	
	L - T - R L - T - R L - -	
Control: Stop Sign	Stop Sign Stop Sign St	top Sign '
	1 0 0 1 0 0 0 1! 0 0 0 0	
	7 27 154 3 2 48 495 27	
Major Street Volume:	957	i
Minor Approach Volume:	545	
Minor Approach Volume Thres	hold: 300	

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

		Scenario Report
Scenario:	Default	Scenario
Command:	Default	Command
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Default Scen	nario Thu Jun 4, 201	5 15:44:01	Page 2-1
	Signal Warrant S	ummary Report	
Intersection	1	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Francis	sco Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Francis	sco Drive @ El Dorado Hills B	Yes	555
# 4 Green V	<i>V</i> alley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambria	a Way @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Initial Vol:3 4201437 540122001053ApproachDel:xxxxxxxxxxxx35.711.7 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=21] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1100] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=53] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1100] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1

 Initial Vol:
 3 420 14
 37 540 12
 20 0 1
 0 0 53

 Major Street Volume:1026Minor Approach Volume:53 Minor Approach Volume: Minor Approach Volume Threshold: 276 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 366 125
 50
 108 236
 4
 2 29
 510
 71
 67
 63

 Major Street Volume:889Minor Approach Volume:541 Minor Approach Volume Threshold: 325 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 1
 0
 0
 0
 1488
 0
 0
 1488
 0

 ApproachDel:
 16.0
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=1] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2977] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1488
 0
 0
 1488
 0
 0
 1488
 0
 0
 1488
 0
 0
 0
 1488
 0
 0
 1488
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Major Street Volume: 2976 Minor Approach Volume: 1 Minor Approach Volume Threshold: -91 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 1
 4

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx

 4 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=36] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 19
 0
 11
 4

 Major Street Volume:34Minor Approach Volume:2 Minor Approach Volume Threshold: 1121 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

_____ Scenario Report

Scenario:	Default	Scenario Report Scenario
Command: Volume: Geometry: Impact Fee: Trip Generation: Trip Distribution: Paths: Routes: Configuration:	Default Default Default Default Default Default Default	Geometry Impact Fee Trip Generation Trip Distribution Path

Default	t Scenario Thu Jun 4, 201	5 15:47:01	Page 2-1		
Signal Warrant Summary Report					
Intersection		Base Met	Future Met		
		[Del / Vol]	[Del / Vol]		
# 2 Fi	rancisco Drive @ Cambria Way	No / No	<u>;;; / ;;;</u>		
# 3 Fi	rancisco Drive @ El Dorado Hills B	Yes	÷.5		
# 4 Gi	reen Valley Road @ Project Access	No / No	;;; / ;;;		
# 5 Ca	ambria Way @ Project Access Drivew	No / No	<pre>5.5. \ 5.5.</pre>		

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 1
 0
 < Initial Vol:4 5011654 52018152820186ApproachDel:xxxxxxxxxxxx36.321.8 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.6] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=107] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:47:01 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R 1113 107 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 248 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control:Stop SignStop SignStop SignStop SignLanes:10101001!00Initial Vol:48125737271543248498273735 Major Street Volume:959Minor Approach Volume:548 Minor Approach Volume Threshold: 299 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 0
 2
 0
 0
 0
 1569
 2
 0
 1028
 0

 ApproachDel:
 16.8
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16. _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2601] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 2599 Minor Approach Volume: 2 Minor Approach Volume Threshold: -44 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 19
 0
 19
 4

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx
 xxxxxx

 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=6] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=48] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:47:01 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 19
 0
 19
 4

 Major Street Volume:42Minor Approach Volume:6 Minor Approach Volume Threshold: 1065 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 1-1

	Scenario Report					
Scenario:	Default Scenario					
Command:	Default Command					
Volume:	Default Volume					
Geometry:	Default Geometry					
Impact Fee:	Default Impact Fee					
Trip Generation:	Default Trip Generation					
Trip Distribution:	Default Trip Distribution					
Paths:	Default Path					
Routes:	Default Route					
Configuration:	Default Configuration					

Default Scenario Thu Jun		5 15:49:53	Page 2-1		
Signal Warrant Summary Report					
Intersection		Base Met	Future Met		
		[Del / Vol]	[Del / Vol]		
# 2 Francisc	o Drive @ Cambria Way	No / No	<u>;;; / ;;;</u>		
# 3 Francisc	o Drive @ El Dorado Hills B	Yes	???		
# 4 Green Va	lley Road @ Project Access	No / No	;;; / ;;;		
# 5 Cambria	Way @ Project Access Drivew	No / No	;;; / ;;;		

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 1
 1
 Initial Vol:137012384841323000ApproachDel:xxxxxxxxxxxx27.711.1 54 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=23] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=995] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=54] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=995] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants). The peak hour warrant analysis in this report is not intended to replace

a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:49:53 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1

 Initial Vol:
 1 370 12 38 484 13 23 0 0 0 54

 Major Street Volume: 918 Minor Approach Volume: 54 Minor Approach Volume: Minor Approach Volume Threshold: 314 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 317 117
 62
 102 222
 6
 2 28 454
 80 60
 61

 Major Street Volume:826Minor Approach Volume:484 Minor Approach Volume Threshold: 351 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.
Default Scena	ario	Thu d	Jun 4	, 2015	15:4	49:53]	Page :	3-4
Peak Hour Delay Signal Warrant Report											
									*****	* * * * * *	* * * * * * *
Intersection	#4 Green Va	lley Roa	ad @	Projec	t Aco	cess D	riveway	7			
* * * * * * * * * * * * *	*****	* * * * * * * *	* * * * *	* * * * * *	* * * * *	* * * * * *	* * * * * * *	*****	*****	* * * * * *	* * * * * *
Base Volume A	Alternative:	Peak Ho	our W	arrant	NOT	Met					
	_	- ''		_	- '	1		- ''			_ '
Approach:	North Bou	nd	Sout	h Boun	.d	Ea	st Bour	ıd	We	st Boı	ind
Approach: Movement:	North Boun							nd R	We: L -		ind - R
		R 1	L – 		R 	L –		R 	L –		- R
Movement:	L - T -	R 1 n	L – Sto	T - p Sign	R 	L –	T - ontroll	R 	L –	T ontro	- R lled
Movement: Control:	L - T - Stop Sign	R 1 n	L – Sto	T - p Sign	R 	L - Unc 0 0	T - ontroll	R Led	L - Unco 0 0	T ontro	- R lled
Movement: Control: Lanes:	L - T - Stop Sign 0 0 0 0	R 1 n 1 (L – Sto 0 0	T - p Sign 0 0 0	R 	L - Unc 0 0 0	T - ontrol1 2 0	R Led 1	L – Unco 0 0 0 1	T ontro 2 (- R lled
Movement: Control: Lanes: Initial Vol:	L - T - Stop Sig 0 0 0 0 0 0	R 1 n 1 (L – Sto D 0 0	T - p Sign 0 0 0	R 	L - Unc 0 0 0	T - ontrol1 2 0 677	R Led 1	L – Unco 0 0 0 1	T - ontro 2 (1680	- R lled

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 2357 Minor Approach Volume: 0 Minor Approach Volume Threshold: -11 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario 	Thu J	un 4,	, 2015	15:4	9:53			P	age 3	3-6
Peak Hour Delay Signal Warrant Report											
								*****	* * * * * *	****	* * * * * * *
Intersection	#5 Cambria	Way @ Pr	oject	: Acce	ss Dr	iveway	r				
* * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * *	* * * * *	* * * * * *	* * * * *	* * * * * *	* * * * * *	*****	*****	****	* * * * * *
Base Volume A	Alternative:	Peak Ho	ur Wa	arrant	NOT	Met					
	I							1.1			1
Approach:	North Bou	.nd	South	n Boun	d	Eas	t Bour	ıd	Wes	t Bou	und
Approach: Movement:	North Bou L - T -										
		R I			R 		T -	R 	L -		- R
Movement:	L – T –	R L n	- Stor	T - p Sign	R 	L - Uncc	T -	R Led	L -	T - ontrol	- R lled
Movement: Control:	L - T - Stop Sig	R L n	- Stor	T - p Sign	R 	L - Uncc	T -	R Led	L – Unco	T - ontrol 1 (- R lled
Movement: Control: Lanes:	L - T - Stop Sig 0 0 0 0	R L n 0 0	Stor 0	T - p Sign 1! 0 0	R 0	L - Uncc 0 0 0	T - ontrol: 1 0	R Led 0	L - Unco 0 0	T - ntro 1 (14	- R lled
Movement: Control: Lanes: Initial Vol:	L - T - Stop Sig 0 0 0 0 0 0	R L n 0 0	 Stor 0 0	T - p Sign 1! 0 0	R 0	L - Uncc 0 0 0	T - ontrol: 1 0 23	R Led 0	L - Unco 0 0 0	T - ntro 1 (14	- R lled

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 1
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 0
 0
 0
 14
 0

 Major Street Volume:37Minor Approach Volume:0 Minor Approach Volume Threshold: 1099 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 1-1

		Scenario Report
Scenario:	Default :	Scenario
Command:	Default (Command
Volume:	Default '	Volume
Geometry:	Default (Geometry
Impact Fee:	Default :	Impact Fee
Trip Generation:	Default '	Trip Generation
Trip Distribution:	Default '	Trip Distribution
Paths:	Default 1	Path
Routes:	Default 1	Route
Configuration:	Default (Configuration

Default Scenar	io Thu Jun 4, 201	5 15:54:09	Page 2-1
	Signal Warrant S	ummary Report	
Intersection		Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Francisco	Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Francisco	Drive @ El Dorado Hills B	Yes	÷;;
# 4 Green Val	ley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambria Wa	ay @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 Initial Vol:4 5881557 56718152818191ApproachDel:xxxxxxxxxxxx44.924.8 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1384] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.8] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=110] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1384] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:54:09 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1!
 0

 Initial Vol:
 4
 588
 15
 57
 567
 18
 15
 2
 8
 18
 1
 91

 1249 110 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 208 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control:Stop SignStop SignStop SignStop SignLanes:10101001!0001!0Initial Vol:4991885278749387647945940 Major Street Volume: 855 Minor Approach Volume: 593 Minor Approach Volume: Minor Approach Volume Threshold: 339 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario	Thu J	un 4	, 2015	15:	54:09		Page 3	-4
Peak Hour Delay Signal Warrant Report									
**********	******	* * * * * * * *	* * * *	* * * * * *	****	* * * * * * * * * * * * * * * *	*******	*******	* * * * *
Intersection	#4 Green Val	lley Roa	d @ :	Projec	t Aco	cess Driveway	7		
* * * * * * * * * * * * *	*****	- * * * * * * * *	****	*****	****	- + * * * * * * * * * *	* * * * * * * *	*******	* * * * *
Base Volume A	Vlternative.	Deak Wo	ur M	arrant	NOT	Mot			
Base volume A	AILEINALIVE	Feak IIC	ul W	arranı					
Approach:	North Bour	nd	Sout	h Boun	d	East Bour	ıd	West Bou	nd
Approach: Movement:						East Bour L - T -		West Bour	nd R
									nd R
Movement:	L - T -	R I		T -	R 	L – T –	R L	- T -	R
Movement: Control:	L - T - Stop Sign	R I 	Sto	T - p Sign	R 	L - T - Uncontrol]	R L .ed U	- T - Jncontrol	R
Movement: Control: Lanes:	L - T - Stop Sign 0 0 0 0	R I n 1 0	Stoj	T - p Sign 0 0	R 0	L - T - 	R L .ed U 1 0	- T - Jncontrol 0 2 0	R
Movement: Control:	L - T - Stop Sign	R I 	Sto	T - p Sign	R 	L - T - Uncontrol]	R L .ed U 1 0	- T - Jncontrol	R
Movement: Control: Lanes:	L - T - Stop Sign 0 0 0 0	R I n 1 0	Stoj	T - p Sign 0 0 0	R 0	L - T - 	R L .ed U 1 0	- T - Jncontrol 0 2 0	R
Movement: Control: Lanes: Initial Vol:	L - T - Stop Sign 0 0 0 0 0 0	R I n 1 0	Stoj 0 0	T - p Sign 0 0 0	R 0	L - T - Uncontroll 0 0 2 0 0 1814	R L .ed U 1 0	- T - Jncontrol 0 2 0 0 1230	R

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 3044 Minor Approach Volume: 0 Minor Approach Volume Threshold: -99 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario 		Thu	Jun	4,	2015	15:5	54:09					P	age	3-	6
Peak Hour Delay Signal Warrant Report																
***********	* * * * * * * *	*****	* * * * * *	* * * * *	* * *	* * * *	* * * * *	* * * * * * *	* * * *	* * *	* * * * *	* * * *	* * *	* * * *	* * *	* * * *
Intersection	#5 Camb	oria Wa	ay @ I	Proje	ct .	Acce	ss Dr	rivewa	7							
***********	******	*****	*****	* * * * *	***	* * * *	* * * * *	*****	* * * * *	* * *	* * * *	* * * *	* * *	* * * :	* * *	* * * *
Base Volume A	Alternat	ive:	Peak H	Hour	War	rant	NOT	Met								
			-													
Approach:	North	1 Bound	d	Sou	ith i	Boun	d	Eas	st B	oun	d		Wes	t Bo	oun	d
	North L -															
	L -	т –	R	L -	·Т	-	R	L -	Т	-	R	L	-	Т		
Movement:	L –	T –	R -	L -	· T		R 	L –	T 		R 	L 		Т		R
Movement:	L –	T - Sign	R -	L - St	Т 	- Sign	R 	L –	T ontro	- 	R ed	L U	- inco	Т 	- 	R
Movement: Control:	L – Stop	T - Sign 0 0	R -	L - St	T 	- Sign	R 	L - Unco	T ontro	 oll 0	R ed	L U 0	- inco	T ntro	- 	R ed
Movement: Control: Lanes:	L - Stop 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	T 	 Sign ! 0 0	R 0	L - Unco 0 0 0	T ontro 1	- oll 0	R ed 0	L U 0	- inco 0	T ntro 1 23	- 	R ed 0
Movement: Control: Lanes: Initial Vol:	L - Stop 0 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	т .op 1	 Sign ! 0 0	R 0	L - Unco 0 0 0	T ontro 1 25	- oll 0	R ed 0	L U 0	- inco 0	T ntro 1 23	- 	R ed 0

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 1
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 0
 0
 0
 25
 0
 0
 23
 0

 Major Street Volume:48Minor Approach Volume:0 Minor Approach Volume Threshold: 1029 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default ScenarioThu Jun 4, 2015 15:57:20Page 1-1

Scenario Report	

Scenario:	Default Scenario
Command: Volume: Geometry: Impact Fee: Trip Generation: Trip Distribution: Paths: Routes:	Default Command Default Volume Default Geometry Default Impact Fee Default Trip Generation Default Trip Distribution Default Path Default Route
Configuration:	Default Configuration

Default Sc	enario Thu Jun 4, 201	5 15:57:20	Page 2-1
	Signal Warrant S	ummary Report	
Intersecti	on	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Franc	isco Drive @ Cambria Way	No / No	<u>;;; / ;;;</u>
# 3 Franc	isco Drive @ El Dorado Hills B	Yes	÷.5
# 4 Green	Valley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambr	ia Way @ Project Access Drivew	No / No	<pre>5.5. \ 5.5.</pre>

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 < Initial Vol:3 3701238 4841524010054ApproachDel:xxxxxxxxxxxx27.511.1 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1001] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=54] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1001] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1

 Initial Vol:
 3 370 12 38 484 15 24 0 1 0 0 54

 Major Street Volume: 922 Minor Approach Volume: 54 Minor Approach Volume: Minor Approach Volume Threshold: 313 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 319 117
 62
 102 222
 6
 2 28 455
 80 60 61

 Major Street Volume:828Minor Approach Volume:485 Minor Approach Volume Threshold: 350 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 1
 0
 0
 0
 677
 2
 0
 1681
 0

 ApproachDel:
 10.7
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=1] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2361] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: Minor Approach Volume: 2360 1 Minor Approach Volume Threshold: -11 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 23
 0
 14
 4

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx

 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=43] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 23
 0
 0
 14
 4

 Major Street Volume:41Minor Approach Volume:2 Minor Approach Volume Threshold: 1071 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 1-1

	Scenario Report
Scenario:	Default Scenario
Command:	Default Command
Volume:	Default Volume
Geometry:	Default Geometry
Impact Fee:	Default Impact Fee
Trip Generation:	Default Trip Generation
Trip Distribution:	Default Trip Distribution
Paths:	Default Path
Routes:	Default Route
Configuration:	Default Configuration

Default S	cenario Thu Jun 4, 201	5 16:00:10	Page 2-1
	Signal Warrant S	ummary Report	
Intersect	ion	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Fran	cisco Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Fran	cisco Drive @ El Dorado Hills B	Yes	555
# 4 Gree	n Valley Road @ Project Access	No / No	<u>;;; / ;;;</u>
# 5 Camb	oria Way @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 Initial Vol:65881557567201821118191ApproachDel:xxxxxxxxxxxx46.325.1 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.4] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=31] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.8] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=110] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 16:00:10 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 6 588 15 57 567 20
 18 2 11 18 1 91

 1253 110 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 207 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0 0 0 1! 0 0

 Initial Vol:
 501 188 5 27 87 49 38 76 482 4 59 40

 Major Street Volume: 857 Minor Approach Volume: 596 Minor Approach Volume: Minor Approach Volume Threshold: 338 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 0
 2
 0
 0
 0
 1814
 2
 0
 1233
 0

 ApproachDel:
 19.5
 xxxxxx
 xxxxx
 xxxxxx
 xxxxxx
 xxxxx
 xxxxx
 xxxxx
 xxxx
 xxxxx
 xxxx
 xxxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xx
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 <t _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=3051] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 0
 2
 0

 Initial Vol:
 0
 0
 2
 0
 0
 0
 1814
 2
 0
 1233
 0

 Major Street Volume: 3049 Minor Approach Volume: 2 Minor Approach Volume Threshold: -99 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 6
 0
 0
 25
 0
 23
 4

 ApproachDel:
 xxxxxx
 8.8
 xxxxxx
 xxxxxx
 1
 1

 4 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=6] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=58] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 16:00:10 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 25
 0
 0
 23
 4

 Major Street Volume:52Minor Approach Volume:6 Minor Approach Volume Threshold: 1008 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Traffic Impact Analysis

El Dorado Hills Memory Care Center (WO#22) El Dorado Hills, California

June 5, 2015

Prepared for:

Sierra Capital & Investment, Inc.

Prepared by: Kimley »Horn

2720 Gateway Oaks Drive, Suite 310 Sacramento, California 95833

Phone: (916) 858-5800

EXECUTIVE SUMMARY

This report documents the results of a traffic impact analysis completed for the El Dorado Hills Memory Care Center project proposed to be located in the southwest corner of the Green Valley Road intersection with Francisco Drive in El Dorado Hills, California (the "proposed project" or "project"). The purpose of this impact analysis is to identify potential environmental impacts to transportation facilities as required by the California Environmental Quality Act (CEQA). This study was performed in accordance with the El Dorado County Community Development Agency's *Transportation Impact Study Guidelines*, and the scope of work provided by a representative of the County.

The 6.85-acre project site is proposed to be developed with a 40,000-square foot memory care center. Access to the site will be provided via one full access driveway along Cambria Way, and one right-in/right-out driveway along Green Valley Road. The following intersections are included in this evaluation:

- 1. Green Valley Road at Francisco Drive
- 2. Francisco Drive at Cambria Way/Embarcadero Drive
- 3. Francisco Drive at El Dorado Hills Boulevard
- 4. Green Valley Road at Project Site Access Driveway (Project Only)
- 5. Cambria Way at Project Site Access Driveway (Project Only)

Based on the County's requirements, this LOS analysis was conducted for the above facilities for the following scenarios:

- A. Existing (2015) Conditions
- B. Existing (2015) plus Proposed Project Conditions
- C. Near-Term (2025) Conditions
- D. Near-Term (2025) plus Proposed Project Conditions

Significant findings of this study include:

- The proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour.
- The County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.
- As defined by the County, the addition of the proposed project to the Existing (2015) and Near-Term (2025) scenarios does not worsen conditions at the study intersections. As a result, the project's potential environmental impacts to transportation facilities are considered to be *less than significant*.

TABLE OF CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
PROJECT AREA ROADWAYS	1
ASSESSMENT OF PROPOSED PROJECT Proposed Project Trip Generation Proposed Project Trip Distribution	5
TRAFFIC IMPACT ANALYSIS METHODOLOGY Consistency with General Plan Land Use Designation	
EXISTING (2015) CONDITIONS	9
EXISTING (2015) PLUS PROPOSED PROJECT CONDITIONS	11
NEAR-TERM (2025) CONDITIONS	13
NEAR-TERM (2025) PLUS PROPOSED PROJECT CONDITIONS	13
IMPACTS AND MITIGATION Standards of Significance Impacts and Mitigation	
OTHER CONSIDERATIONS Peak-Hour Traffic Signal Warrant Evaluation Sight Distance Evaluation Intersection Queuing Evaluation Site Plan, Access, and On-site Circulation Evaluation Preliminary Traffic Safety Evaluation Bicycle and Pedestrian Facilities Evaluation	
CONCLUSIONS	
APPENDICES Traffic Count Data Sheets Analysis Worksheets for Existing (2015) Conditions Analysis Worksheets for Existing (2015) plus Proposed Project Conditions	Appendix B
Analysis Worksheets for Existing (2015) plus Proposed Project Conditions Near-Term (2025) Traffic Volumes Analysis Worksheets for Near-Term (2025) Conditions	Appendix D
Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions Traffic Signal Warrant Worksheets	• •

LIST OF TABLES

Table 1 – Proposed Project Trip Generation	5
Table 2 – Intersection Level of Service Criteria	8
Table 3 – Existing (2015) Intersection Levels of Service	9
Table 4 – Existing (2015) and Existing (2015) Plus Proposed Project Intersection Levels of Service	11
Table 5 – Near-Term (2025) Intersection Levels of Service	13
Table 6 – Near-Term (2025) and Near-Term (2025) plus	
Proposed Project Intersection Levels of Service	16
Table 7 – Traffic Signal Warrant Analysis Results	17
Table 8 – Intersection Queuing Evaluation Results for Select Locations	19
Table 9 – Project Area Sites Selected for Investigation	20

LIST OF FIGURES

Figure 1 – Project Vicinity Map	2
Figure 2 – Proposed Project Site Plan	3
Figure 3 – Study Intersections, Traffic Control, and Lane Geometries	4
Figure 4 – Proposed Project Trip Distribution	6
Figure 5 – Proposed Project Trip Assignment	7
Figure 6 – Existing (2015) Peak-Hour Traffic Volumes	10
Figure 7 – Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes	12
Figure 8 – Near-Term (2025) Peak-Hour Traffic Volumes	14
Figure 9 – Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes	15

INTRODUCTION

This report documents the results of a traffic impact analysis completed for the El Dorado Hills Memory Care Center project proposed to be located in the southwest corner of the Green Valley Road intersection with Francisco Drive in El Dorado Hills, California (the "proposed project" or "project"). The purpose of this impact analysis is to identify potential environmental impacts to transportation facilities as required by the California Environmental Quality Act (CEQA). This study was performed in accordance with the El Dorado County Community Development Agency's *Transportation Impact Study Guidelines*, and the scope of work provided by a representative of the County¹.

The remaining sections of this report document the proposed project, analysis methodologies, impacts and mitigation, and general study conclusions.

PROJECT DESCRIPTION

The 6.85-acre project site is proposed to be developed with a 40,000-square foot memory care center. Access to the site will be provided via one full access driveway along Cambria Way, and one right-in/rightout driveway along Green Valley Road. The project location is shown in **Figure 1**, and the proposed project site plan is shown in **Figure 2**. The following intersections are included in this evaluation:

- 1. Green Valley Road at Francisco Drive
- 2. Francisco Drive at Cambria Way/Embarcadero Drive
- 3. Francisco Drive at El Dorado Hills Boulevard
- 4. Green Valley Road at Project Site Access Driveway (Project Only)
- 5. Cambria Way at Project Site Access Driveway (Project Only)

Figure 3 illustrates the study facilities, existing traffic control, and existing lane configurations.

PROJECT AREA ROADWAYS

The following are descriptions of the primary roadways in the vicinity of the project.

US Route 50 (US-50) is an east-west freeway located south of the project site. Generally, US-50 serves all of El Dorado County's major population centers and provides connections to Sacramento County to the west and the State of Nevada to the east. Primary access to the project site from US-50 is provided at the El Dorado Hills Boulevard/Latrobe Road interchange. Within the general project area, US-50 currently serves approximately 90,000 vehicles per day² (vpd) with three travel lanes in each direction, west of El Dorado Hills Boulevard/Latrobe Road.

Green Valley Road is an east-west arterial roadway that connects Placerville with western portions of El Dorado County and eastern Sacramento County, south of Folsom Lake. Through the project area, Green Valley Road provides two travel lanes in each direction and serves approximately 25,600 vehicles per day³.

¹ Memorandum from Chirag Safi and Sara Muse, Kittelson & Associates, Inc., to Natalie Porter, El Dorado County, February 27, 2015.

² Caltrans Traffic and Vehicle Data Systems Unit, <u>http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2013all/</u>

³ El Dorado County Department of Transportation, 2013.

Kimley **»Horn**

Figure 1 16-0582 2H 253 of 427

M/15-002-001/ENGINEER/EXHBITS/15-002-SITE PLAN.dwg, 2/6/2015 3:37:51 PM, rfu

Figure 2 Proposed Project Site Plan 16-0582 2H 254 of 427

Kimley **»Horn**

Figure 3 Study Intersections, Traffic Control, and Lane Geometries **Francisco Drive** is a north-south collector roadway that provides access to residential areas north of Green Valley Road and connects with El Dorado Hills Boulevard to the south. Francisco Drive has one travel lane in each direction and serves as a primary southern connection between El Dorado Hills Boulevard and Green Valley Road for vehicles destined for, and coming from points to the west.

Cambria Way and **Embarcadero Drive** are two-lane local roadways that provide access to residential areas surrounding Francisco Drive. The proposed project has direct access to Cambria Way.

ASSESSMENT OF PROPOSED PROJECT

Proposed Project Trip Generation

Memory care living facilities provide a living environment with intensive, long-term medical care for seniors with serious health and dementia conditions in a fully-staffed and monitored facility. Due to the nature of these facilities, residents are comprised of older adults who typically do not drive; thus, the site trip generation is anticipated to be low and predominantly composed of employee and visitor trips.

Trip generation for development projects is typically calculated based on rates contained in the Institute of Transportation Engineer's (ITE) publication, *Trip Generation Manual*. The *Trip Generation Manual* is a standard reference used by jurisdictions throughout the country for the estimation of trip generation potential of proposed developments. A trip is defined in the *Trip Generation Manual* as a single or one-directional vehicle movement with either the origin or destination at the project site. In other words, a trip can be either "to" or "from" the site. In addition, a single customer visit to a site is counted as two trips (i.e., one to and one from the site).

Trip generation for the proposed project was estimated using ITE's *Trip Generation Manual*, 9th Edition based on the "Assisted Living" category (ITE Land Use 254). "Assisted Living" is understood to represent residential settings that provide assistance to mentally or physically limited persons, typically with Alzheimer's or ALS, similar to the proposed project. As noted in the *Trip Generation Manual*, employees, visitors, and delivery trucks make most of the trips to these facilities. Truck traffic was captured for some of the studies used in developing the ITE rates, and the findings indicate that truck traffic volume was very low overall, with most trips occurring in the weekday midday period. The anticipated trip generation for this project is shown in **Table 1**.

				AM	Peak-H	our			PM Peak-Hour			
Land Use (ITE Code)	Size (# beds)	Daily Trips	Total	I	N	0	UT	Total	I	N	0	UT
	(# beus)	TTPS	Trips	%	Trips	%	Trips	Trips	%	Trips	%	Trips
Assisted Living (254)	64	172	9	65%	6	35%	3	14	44%	6	56%	8
Net New Exte	rnal Trips:	172	9		6		3	14		6		8
Source: Trip Generation Manual, 9 th Edition, ITE.												

 Table 1 – Proposed Project Trip Generation

As shown in **Table 1**, the proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour. For additional reference, the maximum peak hour trip generation for the facility, which is anticipated to occur on Sunday afternoons, was estimated to be 23 peak hour trips.

Proposed Project Trip Distribution

The distribution of project traffic was based on existing traffic volumes and general knowledge of the travel patterns in western El Dorado County. The project trip distribution percentages are illustrated in **Figure 4**. The resulting AM and PM peak-hour traffic volumes attributed to the proposed project are illustrated in **Figure 5**.

Kimley »Horn

Figure 4 Proposed Project Trip Distribution 16-0582 2H 257 of 427

Kimley»Horn

Figure 5 Proposed Project Trip Assignment 16-0582 2H 258 of 427

TRAFFIC IMPACT ANALYSIS METHODOLOGY

Analysis of transportation facility significant environmental impacts is based on the concept of Level of Service (LOS). The LOS of a facility is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. Levels of Service for this study were determined using methods defined in the *Highway Capacity Manual, 2010* (HCM) and appropriate traffic analysis software.

The HCM includes procedures for analyzing side-street stop controlled (SSSC), all-way stop controlled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole. **Table 2** presents intersection LOS definitions as defined in the HCM.

Level of	Un-Signalized	Signalized			
Service (LOS)	Average Control Delay [*] (sec/veh)	Control Delay per Vehicle (sec/veh)			
А	≤ 10	≤ 10			
В	> 10 - 15	> 10 - 20			
С	> 15 – 25	> 20 – 35			
D	> 25 – 35	> 35 – 55			
E	> 35 – 50	> 55 – 80			
F >50 >80					
Source: Highway Capacity Manual, 2010 * Applied to the worst lane/lane group(s) for SSSC					

Table 2 – Intersection Level of Service Criteri

Consistency with General Plan Land Use Designation

As confirmed by a representative of the County⁴, the County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.

Based on the above information and direction from County's representative, this LOS analysis was conducted for the study facilities for the following scenarios:

- A. Existing (2015) Conditions
- B. Existing (2015) plus Proposed Project Conditions
- C. Near-Term (2025) Conditions
- D. Near-Term (2025) plus Proposed Project Conditions

The following is a discussion of the analyses for these scenarios:

⁴ Email from Chirag Safi, Kittelson & Associates, Inc., April 15, 2015.

EXISTING (2015) CONDITIONS

Recent peak-hour traffic volumes for the Green Valley Road intersection with Francisco Drive intersection were obtained from a recent study completed, by others, for the Green Valley Road Corridor⁵. Two (2) new weekday AM and PM peak period intersection turning movement traffic counts were conducted in March 2015, for the Francisco Drive intersections with Cambria Way/Embarcadero Drive and El Dorado Hills Boulevard. These counts were conducted between the hours of 6:30 a.m. and 9:30 a.m. and 3:30 p.m. and 6:30 p.m. It is worth noting that a two percent heavy vehicle factor was incorporated in this, and all subsequent analysis scenarios. At the time of this study, the El Dorado Hills Boulevard intersection with Francisco Drive was under construction to implement the County's Capital Improvement Project (CIP) #71358 (Francisco Drive and a complementary southbound receiving lane onto El Dorado Hills Boulevard. These improvements are reflected in all subsequent analysis scenarios.

Existing (2015) peak-hour turn movement volumes are presented in **Figure 6**, and the traffic count data sheets are provided in **Appendix A**. **Table 3** presents the peak-hour intersection operating conditions for this analysis scenario.

		Traffic	AM Peak-Hour		PM Peak-Hour	
#	Intersection	Control	Delay (seconds)	LOS	Delay (seconds)	LOS
1	Green Valley Road @ Francisco Drive	Signal	43.7	D	29.9	С
2	Francisco Drive @ Cambria Way/Embarcadero Drive	SSSC*	36.2 (EB)	Е	34.5 (EB)	D
3	El Dorado Hills Boulevard @ Francisco Drive	AWSC	54.0 F 48.7		Е	
4 Green Valley Road @ Project Site Access Driveway SSSC*						
5	Cambria Way @ Project Site Access Driveway	SSSC*	Plus Project Analysis Scenarios Only			
* Co	ntrol delay for worst minor approach (worst minor movement) for SS	SSC. Bold = Su	ubstandard per Co	ounty		

Table 3 – Existing (2015) Intersection Levels of Service

As indicated in **Table 3**, the study intersections operate from LOS C to LOS F during the AM and PM peakhours. Analysis worksheets for this scenario are provided in **Appendix B**.

⁵ *Final Corridor Analysis Report, Green Valley Road,* Kittelson & Associates, Inc., October 2014

Kimley **Whorn**

Figure 6 Existing (2015) Peak-Hour Traffic Volumes 16-0382 2H 261 of 427

EXISTING (2015) PLUS PROPOSED PROJECT CONDITIONS

Peak-hour traffic associated with the proposed project was added to the existing traffic volumes and levels of service were determined at the study intersections. **Table 4** provides a summary of the intersection analysis and **Figure 7** provides the AM and PM peak-hour traffic volumes at the study intersections for this analysis scenario.

Table 4 – Existing (2015) and Existing (2015) plus Proposed Project Inte	ersection Levels of Service

	Intersection	Analysis	Traffic	AM Peak-H	our	PM Peak-Hour		
#		Analysis Scenario ⁺	Control	Delay (seconds)	LOS	Delay (seconds)	LOS	
1	Green Valley Road @	Exist.	Cignal	43.7	D	29.9	С	
1	Francisco Drive	Exist.+PP	Signal	43.8	D	30.1	С	
2	Francisco Drive @	Exist.	SSSC*	36.2 (EB)	Е	34.5 (EB)	D	
2	Cambria Way/Embarcadero Drive	Exist.+PP	3330	36.2 (EB)	Е	35.0 (EB)	Е	
2	El Dorado Hills Boulevard @	Exist.		54.0	F	48.7	E	
3	Francisco Drive	Exist.+PP	AWSC	53.8	F	48.8	E	
	Green Valley Road @	Exist.		Plus Project Ana	lysis Sc	enarios Only		
4	Project Site Access Driveway	Exist.+PP	SSSC*	10.4 (NB)	В	17.0 (NB)	С	
_	Cambria Way @	Exist.	Plus Project Analysis Scenarios Only					
5	Project Site Access Driveway	Exist.+PP	SSSC [*]	8.7 (SB)	А	8.7 (SB)	А	
	 ⁺ Exist. = Existing (2015), Exist. + PP = Existing (2015) plus Proposed Project [*] Control delay for worst minor approach (worst minor movement) for SSSC. Bold = Substandard per County 							

As indicated in **Table 4**, the study intersections operate from LOS A to LOS F with the addition of project traffic during the AM and PM peak-hours. The analysis worksheets for this scenario are provided in **Appendix C**.

Kimley **»Horn**

Figure 7 Existing (2015) plus Proposed Project Peak-Hour Traffic Volumes 16-0582 2H 263 of 427

NEAR-TERM (2025) CONDITIONS

Consistent with the traffic forecasting methodology specified by a representative of the County¹, traffic projections for this study are based on the County's current Travel Demand Model (TDM)⁶ and recently approved 20-year growth projections. These Near-Term, year 2025 conditions are based on a straight-line interpolation between model Existing (2010) and Cumulative (2035) forecast. Details regarding the volume forecasting and intersection turning movement development are presented in **Appendix D**.

Table 5 provides a summary of the intersection analysis and **Figure 8** provides the AM and PM trafficvolumes for this analysis scenario.

		Traffic	AM Peak-Hour		PM Peak-Hour			
#	# Intersection		Delay (seconds)	LOS	Delay (seconds)	LOS		
1	Green Valley Road @ Francisco Drive	Signal	44.6	D	46.3	D		
2	Francisco Drive @ Cambria Way/Embarcadero Drive	SSSC [*]	28.1 (EB)	D	43.6 (EB)	Е		
3	El Dorado Hills Boulevard @ Francisco Drive	AWSC	39.8	E	46.1	E		
4	Green Valley Road @ Project Site Access Driveway	SSSC*	Dhua Draia	at An alua	ia Casa anisa Os	- l		
5	Cambria Way @ Project Site Access Driveway	SSSC*	Plus Project Analysis Scenarios Only					
* Co	* Control delay for worst minor approach (worst minor movement) for SSSC.							

Table 5 - Near-Term (2025) Intersection Levels of Service

As indicated in **Table 5**, the study intersections operate from LOS C to LOS E during the AM and PM peakhours. The analysis worksheets for this scenario are provided in **Appendix E**.

NEAR-TERM (2025) PLUS PROPOSED PROJECT CONDITIONS

Peak-hour traffic associated with the proposed project was added to the Near-Term (2015) traffic volumes, and levels of service were determined at the study facilities. **Table 6** provides a summary of the intersection operating conditions for this analysis scenario. **Figure 9** provides the AM and PM traffic volumes for this analysis scenario.

As indicated in **Table 6**, the study intersections operate from LOS A to LOS E during the AM and PM peakhours. The analysis worksheets for this scenario are provided in **Appendix F**.

⁶ As directed by a representative of the County, the Dixon Ranch project was manually added to the County's 2035 TDM for use in the traffic forecasting efforts for this project.

Kimley **»Horn**

Figure 8 Near-Term (2025) Peak-Hour Traffic Volumes 16-0582 2H 265 of 427

Kimley **»Horn**

Figure 9 Near-Term (2025) plus Proposed Project Peak-Hour Traffic Volumes 16-0582 2H 266 of 427 Table 6 - Near-Term (2025) and Near-Term (2025) plus Proposed Project Intersection Levels of Service

	Intersection	Analysis	Traffic	AM Peak-I	lour	PM Peak-Hour			
#		Analysis Scenario ⁺	Control	Delay (seconds)	LOS	Delay (seconds)	LOS		
1	Green Valley Road @	NT	Cianal	44.6	D	46.3	D		
T	Francisco Drive	Francisco Drive NT+PP Signal		44.7	D	46.7	D		
2	Francisco Drive @	NT	SSS 6*	28.1 (EB)	D	43.6 (EB)	E		
2	Cambria Way/Embarcadero Drive	NT+PP	SSSC [*]	27.8 (EB)	D	44.1 (EB)	Е		
3	El Dorado Hills Boulevard @	NT	AWSC	39.8	E	46.1	E		
3	Francisco Drive	NT+PP	AWSC	40.0	E	46.6	E		
4	Green Valley Road @	NT		Plus Project And	lysis Scer	narios Only			
4	Project Site Access Driveway	NT+PP	SSSC*	10.7 (NB)	В	19.7 (NB)	С		
_	Cambria Way @	NT	T Plus Project Analysis Scena						
5	Project Site Access Driveway	NT+PP	SSSC [*]	8.7 (SB)	А	8.8 (SB)	А		
+ NT	 * NT = Near-Term (2025), NT + PP = NT (2025) plus Proposed Project 								

Control delay for worst minor approach (worst minor movement) for SSSC.

IMPACTS AND MITIGATION

Standards of Significance

Project impacts were determined by comparing conditions with the proposed project to those without the project. Impacts for intersections are created when traffic from the proposed project forces the LOS to fall below a specific threshold.

The County's standards⁷ specify the following:

"Level of Service (LOS) for County-maintained roads and State highways within the unincorporated areas of the County *shall not be worse than* <u>LOS E in the Community Regions</u>." (El Dorado County General Plan Policy TC-Xd) The study intersections are located within the El Dorado Hills Community Region.

"If a project causes the peak-hour LOS or volume/capacity ratio on a county road or State highway that would otherwise meet the County standards (without the project) to exceed the [given] values, then the impact shall be considered significant."

"If any county road or state highway fails to meet the [given] standards for peak hour LOS or volume/capacity ratios without the proposed project, and the project will worsen conditions on the road or highway, then the impact shall be considered significant." According to General Plan Policy TC- Xe⁸, 'worsen' is defined as "a 2 percent increase in traffic during the a.m. peak hour, p.m. peak hour, or daily, or the addition of 100 or more daily trips, or the addition of 10 or more trips during the a.m. peak hour or the p.m. peak hour."

⁷ Transportation Impact Study Guidelines, El Dorado County Community Development Agency, November 2014.

⁸ El Dorado County General Plan, Transportation and Circulation Element, July 2004.

Impacts and Mitigation

Existing (2015) plus Proposed Project Conditions

As reflected in **Table 4**, the addition of the proposed project does not result in a significant impact as defined by the County.

Impacts:

None.

Mitigation: None Required.

·

Near-Term (2025) plus Proposed Project Conditions

As reflected in **Table 6**, the addition of the proposed project does not result in a significant impact as defined by the County.

Impacts:

None.

Mitigation:

None Required.

OTHER CONSIDERATIONS

Peak-Hour Traffic Signal Warrant Evaluation

A planning level assessment of the need for traffic signalization was performed for the un-signalized study intersections. This evaluation was performed consistently with the peak-hour warrant methodologies noted in Section 4C of the *California Manual on Uniform Traffic Control Devices (CMUTCD), 2014 Edition*. A summary of the peak-hour warrant results are presented in **Table 7**.

Analysis Scenario							
#	Intersection	Existing (2015)	Existing (2015) plus PP	Near-Term (2025)	Near-Term (2025) plus PP		
2	Francisco Dr @ Cambria Wy	No / No	No / No	No / No	No / No		
3	El Dorado Hills Blvd @ Francisco Dr	Yes / Yes	Yes / Yes	Yes / Yes	Yes / Yes		
4	Cambria Way @ Project Access Dwy		No / No		No / No		
5	Green Valley Rd @ Site Access Dwy		No / No		No / No		
	Results are presented in AM / PM format. Note: Peak-hour warrant is satisfied if Condition A or B is met.						

As shown in **Table 7**, intersection #3 (El Dorado Hills Blvd @ Francisco Dr) satisfies the peak-hour signal warrant with and without the addition of the proposed project. However, the proposed project does not cause the peak-hour signal warrant to be satisfied at any of the study intersections. Detailed results of this analysis are presented in **Appendix G**.

Sight Distance Evaluation

A sight distance evaluation was completed for both site access driveways (Intersections #4 and #5). These evaluations were based on observed horizontal and vertical geometric conditions and were performed in accordance with the guidelines presented in the *Geometric Design of Highways and Streets, 2011*, published by the American Association of State Highway and Transportation Officials (AASHTO).

According to AASHTO, an assumed 30 mph design speed (25 mph posted speed limit) requires a minimum of 200 feet of Stopping Sight Distance (SSD). Adequate SSD was documented along the Cambria Way approaches to the site driveway. Furthermore, an assumed 60 mph design speed (55 mph posted speed limit) requires a minimum of 570 feet of SSD. Adequate sight distance was observed to the left (west) for the Green Valley Road intersection with the site access driveway.

To more thoroughly assess conditions for eastbound Cambria Way traffic at Francisco Drive, we also completed an evaluation of sight distance for this intersection approach. According to AASHTO, an assumed 45 mph design speed (40 mph posted speed limit) requires a minimum of 360-feet of SSD. Adequate AASHTO SSD was documented along the Francisco Drive approaches to Cambria Way. In all cases, roadside vegetation should be maintained to preserve sight distance.

Intersection Queuing Evaluation

Vehicle queuing for the study intersections was evaluated. For the queuing analysis, the anticipated vehicle queues for critical movements at these intersections were evaluated. The calculated vehicle queues were compared to actual or anticipated vehicle storage/segment lengths. Results of the queuing evaluation are presented in **Table 8**. Analysis sheets that include the anticipated vehicle queues are presented in Appendices B, C, E, and F. As presented in **Table 8**, the addition of the proposed project adds additional queuing to several of the study locations.

Site Plan, Access, and On-site Circulation Evaluation

The site plan for the proposed project (**Figure 2**) was qualitatively reviewed for general access and on-site circulation. According to the site plan, access to the site will be provided via two (2) driveways, one along Cambria Way and one along Green Valley Road. Level of service and delay data was previously reported for these intersections. The combination of these two access points, as well as the on-site circulation system provides adequate access to/from both Green Valley Road and Francisco Drive (via Cambria Way).

The proposed project's Green Valley Road Driveway is proposed to accommodate both right-in and right-out movements. Adequate deceleration distance should be provided and the acceleration distance should be considered as part of the existing eastbound right-turn pocket. The proposed geometrics and access are virtually identical to the existing Safeway center driveway located along the westbound approach to the Green Valley Road intersection with Francisco Drive. Furthermore, as documented in Appendices B, C, E, and F, the northbound right movement from the proposed project is not anticipated to be blocked by the eastbound approach queues at the Green Valley Road intersection with Francisco Drive.

In addition, *Fire Safe Regulations*⁹ state that on-site roadways shall "provide for safe access for emergency wildland fire equipment and civilian evacuation concurrently, and shall provide unobstructed traffic circulation during a wildfire emergency..." All project roadways shall be designed and constructed in accordance with these requirements.

 ⁹ Fire Safe Regulations, Title 14 Natural Resources, Division 1.5 Department of Forestry, Chapter 7 – Fire Protection, Subchapter
 2 SRA Safe Regulations, Article 2 Emergency Access, El Dorado County Building Department.

		AM Pea	k-Hour	PM Pea	k-Hour
Intersection / Analysis Scenario	Movement	Available	95 th %	Available	95 th %
		Storage (ft)	Queue (ft)	Storage (ft)	Queue (ft)
#1, Green Valley Rd @ Francisco Dr	NB Left				
E	xisting (2015)		151		157
Existing plus Proposed	Project (2015)	200+	152	200+	160
Nea	r-Term (2025)	200	128	200+	204
Near-Term plus Proposed	Project (2025)		129		205
	WB Left				
E	Existing (2015)		98		259
Existing plus Proposed	Project (2015)	200	115	200	261
Nea	r-Term (2025)	200	96	200	269
Near-Term plus Proposed	Project (2025)		100		274
#2, Francisco Dr @ Cambria Way	EB Left				
E	Existing (2015)		25		25
Existing plus Proposed	Project (2015)	*	25	*	25
Nea	r-Term (2025)		25		25
Near-Term plus Proposed	Project (2025)		25		25
#3, Francisco Dr @ El Dorado Hills Blvd	NB Left				
	Existing (2015)		303++		399++
Existing	plus PP (2015)	100	305++	100	401++
Nea	r-Term (2025)	100	264++	100	416++
Near-Term	plus PP (2025)		266++		418++
#4, Green Valley Rd @ Site Dwy	NB			_	
E	Existing (2015)				
Existing	plus PP (2015)	*	0	*	0
Nea	r-Term (2025)				
Near-Term	plus PP (2025)		0		0
#5, Cambria Wy @ Site Dwy	SB				
E	Existing (2015)				
Existing	Existing plus PP (2015) Near-Term (2025)			*	0
Nea					
	plus PP (2025)		0		0
Source: Highway Capacity Manual (HCM) 2010 methodology per Synchro [©] v9. * Intersection approach with available storage length equal to segment length; ⁺ Dual left-turn lane; ⁺⁺ Source: Per Page 9-127, A Policy on Geometric Design of Highways and Streets, AASHTO, 2011. ((Peak-Hour Volume/30 min)*25 feet)					

Table 8 – Intersection Queuing Evaluation Results for Select Locations

Preliminary Traffic Safety Evaluation

According to the County's 2011 Accident Location Study¹⁰, several study area sites (i.e., intersections and roadway segments) experienced three (3) or more accidents during a three-year period between January 1, 2009, and December 31, 2011. According to the Study, these sites were selected for investigation and determination of corrective action(s). **Table 9** provides a summary of the study area sites and their selected actions.

According to the *Study*, eight (8) sites "do not require further review at this time. However, these sites will continue to be monitored and any subsequent increase in the frequency of accidents may necessitate further review and analysis." One (1) site has a pending improvement and it is anticipated that, "upon completion, [this] improvement will substantially reduce the number of accidents."

¹⁰ Annual Accident Location Study 2011, County of El Dorado Department of Transportation, March 18, 2012.

Site #	Location Description	Accident Rate⁺	Identified Action				
13	El Dorado Hills Blvd, US 50 On/Off Ramps	1.07	Pending Improvements				
14	14 El Dorado Hills Blvd, North of Lassen/Serrano Pkwy		None Required				
15	15 El Dorado Hills Blvd, South of Wilson Blvd		None Required				
16	El Dorado Hills Blvd, at Crown Dr	0.24	None Required				
20	Green Valley Rd, vicinity of Sophia Pkwy	0.48	None Required				
21	Green Valley Rd, vicinity of Amy's Ln	0.18	None Required				
22	Green Valley Rd, vicinity of Mormon Island Dr	0.17	None Required				
23	Green Valley Rd, vicinity of Silva Valley Pkwy	0.68	None Required				
57	57 Serrano Pkwy, vicinity of El Dorado Hills Blvd 0.32 None Required						
Source: Annual Accident Location Study 2011, County of El Dorado Department of Transportation, May 18, 2012. ⁺ # Accidents per Million Vehicles (MV) for single sites (intersections/curves), # Accidents per Million Vehicle Miles (MVM) for roadway sections.							

Table 9 – Project Area Sites Selected for Investigation

Bicycle and Pedestrian Facilities Evaluation

According to Chapter 5 of the *El Dorado County Bicycle Transportation Plan*, Class II Bike Lanes are proposed for Green Valley Road, Francisco Drive, and El Dorado Hills Boulevard in the vicinity of the project site. In addition, Class III Bike Routes are proposed for Francisco Drive and Salmon Falls Road/Lakehills Drive north of Green Valley Road. A Class I Bike Path is also proposed for El Dorado Hills Boulevard, south of Francisco Drive.

While the project will not result in removal of a bikeway/bike lane or prohibition of implementation of the facilities identified in the *Plan*, it is required to include pedestrian/bicycle paths connecting to adjacent commercial, research and development, or industrial projects and any schools, parks, or other public facilities. The proposed project will be required to construct on-site roadway and pedestrian facilities in accordance with County design guidelines. These on-site pedestrian and bicycle facilities will connect the project with the proposed adjacent Class II Bike Lanes along Green Valley Road and Francisco Drive. Through these connections to the proposed bike lane network, the project will provide continuity with adjacent projects, schools, parks, and other public facilities.

CONCLUSIONS

Based upon the analysis documented in this report, the following conclusions are offered:

- The proposed project is estimated to generate 172 total new daily trips, with 9 new trips occurring during the AM peak-hour, and 14 new trips occurring during the PM peak-hour.
- The County's current Travel Demand Model (TDM) incorporates non-residential growth for the subject parcel within the project's Traffic Analysis Zone (TAZ #614). Because the project (20 employees, 64 beds) is less intensive than what is currently included in the County's TDM (a total of 48 non-retail employees), new Cumulative (2035) analyses are not required to be completed as part of this study.
- As defined by the County, the addition of the proposed project to the Existing (2015) and Near-Term (2025) scenarios does not worsen conditions at the study intersections. As a result, the project's potential environmental impacts to transportation facilities are considered to be *less than significant*.

Appendix A:

Traffic Count Data Sheets

(916) 771-8700

orders@atdtraffic.com

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

File Name : 15-7246-001 Francisco Drive-Embarcadero Drive-Cambria ' Date : 3/24/2015

Unshifted Count = All Vehicles Francisco Drive Embarcadero Drive Francisco Drive Cambria Way Southbound Westbound Eastbound Northbound START TIME LEFT THRU RIGHT UTURNS APP.TOTAL Total Uturn Total 06:00 06:15 06:30 06:45 Total 07:00 07:15 07:30 07:45 Total 08:00 08:15 08:30 08:45 Total 15:00 15:15 15:30 15:45 Total 16:00 16:15 16:30 16:45 Total 17:00 17:15 17:30 17:45 Total Grand Total 90.4% 2.3% 15.5% 0.7% 0.0% 96.1% 3.4% 0.0% 75.3% 0.0% Apprch % 7.0% 0.3% 83.8% 0.5% 7.9% 16.9% 49.9% 0.0% 6.8% 0.0% 0.2% 1.5% 100.0% Total % 3.5% 45.1% 1.2% 0.1% 1.1% 0.0% 5.7% 0.2% 40.2% 1.4% 41.8% 1.1% 0.1% 0.0%

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

File Name : 15-7246-001 Francisco Drive-Embarcadero Drive-Cambria ' Date : 3/24/2015

Nothing on	Dank 2								Unshi	fted Count	– All Ve	hicles									
AM PEAK		F	rancisco	Drive			En	nbarcadero					rancisco	Drive				Cambria	Way		1
HOUR			Southbou	und				Westbou	nd				Northbo	und				Eastbou	und		1
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fr	om 07:30 f	to 08:30																		
Peak Hour Fo	r Entire l	ntersectior	n Begins	at 07:30																	
07:30	9	154	4	0	167	0	0	15	0	15	1	101	4	0	106	8	0	0	0	8	296
07:45	13	111	1	0	125	0	0	7	0	7	0	85	5	0	90	2	0	0	0	2	224
08:00	7	144	1	0	152	0	0	14	0	14	0	92	1	0	93	2	0	0	0	2	261
08:15	8	131	4	0	143	0	0	12	0	12	0	102	4	0	106	5	0	0	0	5	266
Total Volume	37	540	10	0	587	0	0	48	0	48	1	380	14	0	395	17	0	0	0	17	1047
% App Total	6.3%	92.0%	1.7%	0.0%		0.0%	0.0%	100.0%	0.0%		0.3%	96.2%	3.5%	0.0%		100.0%	0.0%	0.0%	0.0%		
PHF	.712	.877	.625	.000	.879	.000	.000	.800	.000	.800	.250	.931	.700	.000	.932	.531	.000	.000	.000	.531	.884
	.112	.077	.020	.000	.015	.000	.000	.000	.000	.000	.200	.001	.700	.000	.562	.001	.000	.000	.000	.001	

PM PEAK		Fi	ancisco	Drive			Em	barcader	o Drive			F	rancisco	Drive			(Cambria \	Nay		I Contraction of the second
HOUR			Southbo	und				Westbou	und				Northbou	und				Eastbou	nd		1
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 16:45 t	o 17:45																		
Peak Hour Fo	r Entire Ir	ntersectior	n Begins	at 16:45																	
16:45	12	127	6	1	146	2	0	17	0	19	1	128	4	0	133	0	1	1	0	2	300
17:00	15	130	3	1	149	8	0	26	0	34	0	123	4	0	127	4	0	3	0	7	317
17:15	15	144	5	0	164	8	0	23	0	31	1	130	6	0	137	3	0	0	0	3	335
17:30	12	119	2	2	135	2	1	20	0	23	0	120	2	0	122	5	1	1	0	7	287
Total Volume	54	520	16	4	594	20	1	86	0	107	2	501	16	0	519	12	2	5	0	19	1239
% App Total	9.1%	87.5%	2.7%	0.7%		18.7%	0.9%	80.4%	0.0%		0.4%	96.5%	3.1%	0.0%		63.2%	10.5%	26.3%	0.0%		L
PHF	.900	.903	.667	.500	.905	.625	.250	.827	.000	.787	.500	.963	.667	.000	.947	.600	.500	.417	.000	.679	.925

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

Unshifted Count = All Vehicles

File Name : 15-7246-002 El Dorado Hills Boulevard-Francisco Drive.ppc Date : 3/24/2015

El Dorado Hills Boulevard Francisco Drive El Dorado Hills Boulevard Francisco Drive Westbound Eastbound Southbound Northbound START TIME LEFT THRU RIGHT UTURNS APP.TOTAL Total Uturn Total 06:00 06:15 06:30 06:45 Total 07:00 07:15 07:30 07:45 Total 08:00 08:15 08:30 08:45 Total 15:00 15:15 15:30 15:45 Total 16:00 16:15 16:30 16:45 Total 17:00 17:15 17:30 17:45 Total Grand Total 0.9% 0.0% 30.2% 0.0% 65.2% 30.5% 4.3% 0.0% 92.9% 0.0% Apprch % 16.6% 82.5% 40.7% 29.1% 0.5% 6.6% 0.0% 0.0% 8.0% 0.0% 33.4% 100.0% Total % 2.9% 14.2% 0.2% 17.2% 2.4% 3.2% 2.3% 27.0% 12.6% 1.8% 41.4% 0.2% 2.2% 31.0% 0.0%

El Dorado County All Vehicles on Unshifted Peds & Bikes on Bank 1 Nothing on Bank 2

(916) 771-8700

orders@atdtraffic.com

File Name : 15-7246-002 El Dorado Hills Boulevard-Francisco Drive.ppc Date : 3/24/2015

Nouning on	Dalik Z																				
-									Unshi	fted Count	= All Ve	hicles									
AM PEAK		El Dor	ado Hills I	Boulevard			F	rancisco I	Drive			El Dor	ado Hills	Boulevard			F	rancisco	Drive		
HOUR			Southbou	und				Westbou	nd				Northbou	und				Eastbou	nd		
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	om 08:00	to 09:00																		
Peak Hour Fo	r Entire li	ntersectio	n Begins a	at 08:00																	
08:00	12	68	0	0	80	5	11	6	0	22	83	21	8	0	112	1	5	123	0	129	343
08:15	23	69	0	0	92	16	10	11	0	37	99	39	10	0	148	1	4	139	0	144	421
08:30	65	52	1	0	118	20	18	24	0	62	78	35	23	0	136	0	12	95	0	107	423
08:45	8	47	2	0	57	30	24	22	0	76	79	30	9	0	118	0	5	104	0	109	360
Total Volume	108	236	3	0	347	71	63	63	0	197	339	125	50	0	514	2	26	461	0	489	1547
% App Total	31.1%	68.0%	0.9%	0.0%		36.0%	32.0%	32.0%	0.0%		66.0%	24.3%	9.7%	0.0%		0.4%	5.3%	94.3%	0.0%		
PHF	.415	.855	.375	.000	.735	.592	.656	.656	.000	.648	.856	.801	.543	.000	.868	.500	.542	.829	.000	.849	.914
		El Dor	ada Hilla I	Roulovard				Irancieco I	Drivo				odo Hillo	Roulovard				rancisco	Drivo		

	El Dora	ado Hills I	Boulevard			F	rancisco l	Drive			El Dor	ado Hills	Boulevard			F	rancisco	Drive		
		Southbou	und				Westbou	nd				Northbou	und				Eastbou	Ind		
LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
lysis Fro	om 16:30 t	o 17:30																		
Entire In	tersectior	Begins	at 16:30																	
9	41	1	0	51	7	10	7	0	24	113	65	4	0	182	1	16	109	0	126	383
4	44	1	0	49	5	6	3	0	14	123	59	7	0	189	0	14	116	0	130	382
4	33	0	0	37	10	14	12	0	36	114	74	16	0	204	1	8	128	0	137	414
10	36	1	0	47	5	7	13	0	25	126	59	10	0	195	0	10	141	0	151	418
27	154	3	0	184	27	37	35	0	99	476	257	37	0	770	2	48	494	0	544	1597
14.7%	83.7%	1.6%	0.0%		27.3%	37.4%	35.4%	0.0%		61.8%	33.4%	4.8%	0.0%		0.4%	8.8%	90.8%	0.0%		
.675	.875	.750	.000	.902	.675	.661	.673	.000	.688	.944	.868	.578	.000	.944	.500	.750	.876	.000	.901	.955
	ysis Fro Entire In 9 4 4 10 27 14.7%	LEFT THRU ysis From 16:30 t Entire Intersection 9 41 4 44 4 33 10 36 27 154 14.7% 83.7%	Southbot LEFT THRU RIGHT ysis From 16:30 to 17:30 Entire Intersection Begins 9 41 1 4 44 1 4 33 0 10 36 1 27 154 3 4 33 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1 3 3 1 3 3 1 3	Southbound LEFT THRU RIGHT UTURNS ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 1 0 9 41 1 0 4 44 1 0 4 33 0 0 10 36 1 0 27 154 3 0 14.7% 83.7% 1.6% 0.0%	LEFT THRU RIGHT UTURNS APP.TOTAL ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 0 51 4 44 1 0 49 4 33 0 37 10 36 1 0 47 27 154 3 0 184 14.7% 83.7% 1.6% 0.0%	Southbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 1 0 51 7 4 44 1 0 49 5 4 33 0 0 37 10 10 36 1 0 47 5 27 154 3 0 184 27 14.7% 83.7% 1.6% 0.0% 27.3%	Southbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 1 0 51 7 10 4 44 1 0 49 5 6 4 33 0 0 37 10 14 10 36 1 0 47 5 7 27 154 3 0 184 27 37 14.7% 83.7% 1.6% 0.0% 27.3% 37.4%	Southbound Westbourd LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 1 0 51 7 10 7 4 44 1 0 49 5 6 3 4 33 0 0 37 10 14 12 10 36 1 0 47 5 7 13 27 154 3 0 184 27 37 35 14.7% 83.7% 1.6% 0.0% 27.3% 37.4% 35.4%	Southbound Westbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 1 0 51 7 10 7 0 4 44 1 0 49 5 6 3 0 4 33 0 0 37 10 14 12 0 10 36 1 0 47 5 7 13 0 27 154 3 0 184 27 37 35 0 14.7% 83.7% 1.6% 0.0% 27.3% 37.4% 35.4% 0.0%	Southbound Westbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TOTAL ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 APP.TOTAL LEFT THRU RIGHT UTURNS APP.TOTAL 9 41 1 0 51 7 10 7 0 24 4 44 1 0 49 5 6 3 0 14 4 33 0 0 37 10 14 12 0 36 10 36 1 0 47 5 7 13 0 25 27 154 3 0 184 27 37 35 0 99 14.7% 83.7% 1.6% 0.0% 27.3% 37.4% 35.4% 0.0%	Southbound Westbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 5 7 10 7 0 24 113 9 41 1 0 51 7 10 7 0 24 113 4 44 1 0 49 5 6 3 0 14 123 4 33 0 0 37 10 14 12 0 36 114 10 36 1 0 47 5 7 13 0 25 126 27 154 3 0 184 27 37 35 0 99 476 14.7% <td>Southbound Westbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 3 0 14 123 59 4 33 0 0 37 10 14 12 0 36 114 74 10 36 1 0 47 5 7 13 0 25 126 59 27 154 3 0 184 27 37 35 0 99 47.6 257 14.7% 83.7% 1.6% 0.0% 27.3% 37.4% 35.4% 0.0%</td> <td>Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 0 51 7 10 7 0 24 113 65 4 4 44 1 0 49 5 6 3 0 14 123 59 7 4 33 0 0 37 10 14 12 0 36 114 74 16 10 36 1 0 47 5 7 13 0 25 126 59</td> <td>Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT TURNS APP.TOTAL LEFT TURNS</td> <td>Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU</td> <td>Southbound Westbound Northbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TOTAL LEFT 9 41 1 0 51 7 10 7 0 24 113 65 4 0 182 1 4 44 1 0 47 5 7 13 <t< td=""><td>Southbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU 9 41 0 51 7 10 7 0 24 113 65 4 0 182 1 16 4 33 0 0 37 10</td><td>Southbound Westbound Northbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT<!--</td--><td>Southbound Westbound Northbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UT</td><td>Southbound Westbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TO</td></td></t<></td>	Southbound Westbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 3 0 14 123 59 4 33 0 0 37 10 14 12 0 36 114 74 10 36 1 0 47 5 7 13 0 25 126 59 27 154 3 0 184 27 37 35 0 99 47.6 257 14.7% 83.7% 1.6% 0.0% 27.3% 37.4% 35.4% 0.0%	Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT ysis From 16:30 to 17:30 Entire Intersection Begins at 16:30 9 41 0 51 7 10 7 0 24 113 65 4 4 44 1 0 49 5 6 3 0 14 123 59 7 4 33 0 0 37 10 14 12 0 36 114 74 16 10 36 1 0 47 5 7 13 0 25 126 59	Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT TURNS APP.TOTAL LEFT TURNS	Southbound Westbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU	Southbound Westbound Northbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TOTAL LEFT 9 41 1 0 51 7 10 7 0 24 113 65 4 0 182 1 4 44 1 0 47 5 7 13 <t< td=""><td>Southbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU 9 41 0 51 7 10 7 0 24 113 65 4 0 182 1 16 4 33 0 0 37 10</td><td>Southbound Westbound Northbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT<!--</td--><td>Southbound Westbound Northbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UT</td><td>Southbound Westbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TO</td></td></t<>	Southbound Northbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU 9 41 0 51 7 10 7 0 24 113 65 4 0 182 1 16 4 33 0 0 37 10	Southbound Westbound Northbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT </td <td>Southbound Westbound Northbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UT</td> <td>Southbound Westbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TO</td>	Southbound Westbound Northbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UT	Southbound Westbound Northbound Eastbound Eastbound LEFT THRU RIGHT UTURNS APP.TOTAL LEFT THRU RIGHT UTURNS APP.TO

Appendix B:

Analysis Worksheets for Existing (2015) Conditions

	₫	۶	-	¥	F	4	+	×	1	t	/	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		አካ	<u>††</u>	1		A	<u>††</u>	1	ሻሻ	≜ ⊅		ሻ
Volume (veh/h)	1	161	216	230	15	45	813	106	306	180	6	122
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1810	1776	1845		1900	1881	1863	1845	1863	1900	1845
Adj Flow Rate, veh/h		199	267	284		52	934	122	364	214	7	158
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.81	0.81	0.81		0.87	0.87	0.87	0.84	0.84	0.84	0.77
Percent Heavy Veh, %		5	7	3		0	1	2	3	2	2	3
Cap, veh/h		191	1096	510		67	1090	483	438	1125	37	192
Arrive On Green		0.06	0.32	0.32		0.04	0.30	0.30	0.13	0.32	0.32	0.11
Sat Flow, veh/h		3344	3374	1568		1810	3574	1583	3408	3498	114	1757
Grp Volume(v), veh/h		199	267	284		52	934	122	364	108	113	158
Grp Sat Flow(s),veh/h/ln		1672	1687	1568		1810	1787	1583	1704	1770	1843	1757
Q Serve(g_s), s		5.0	5.1	13.1		2.5	21.6	5.1	9.1	3.9	3.9	7.7
Cycle Q Clear(g_c), s		5.0	5.1	13.1		2.5	21.6	5.1	9.1	3.9	3.9	7.7
Prop In Lane		1.00		1.00		1.00		1.00	1.00		0.06	1.00
Lane Grp Cap(c), veh/h		191	1096	510		67	1090	483	438	569	593	192
V/C Ratio(X)		1.04	0.24	0.56		0.78	0.86	0.25	0.83	0.19	0.19	0.82
Avail Cap(c_a), veh/h		191	1096	510		103	1153	511	466	569	593	220
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.4	21.7	24.4		41.9	28.7	23.0	37.3	21.5	21.5	38.3
Incr Delay (d2), s/veh		77.2	0.1	1.4		18.0	6.3	0.3	11.5	0.2	0.2	19.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.3	2.4	5.8		1.6	11.6	2.3	5.0	1.9	2.0	4.8
LnGrp Delay(d),s/veh		118.6	21.8	25.8		59.8	35.0	23.2	48.8	21.7	21.7	57.9
LnGrp LOS		F	С	С		E	D	С	D	С	С	E
Approach Vol, veh/h			750				1108			585		
Approach Delay, s/veh			49.0				34.9			38.6		
Approach LOS			D				С			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.2	34.2	15.3	31.0	9.0	32.4	13.6	32.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (q_c+11) , s	4.5	15.1	11.1	28.0	7.0	23.6	9.7	5.9				
Green Ext Time (p_c), s	0.0	7.1	0.1	0.0	0.0	3.2	0.1	5.9				
Intersection Summary												
HCM 2010 Ctrl Delay			43.7									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	ţ	~
Movement	SBT	SBR
Lane Configurations	<u> </u>	
Volume (veh/h)	312	367
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)	0	1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1881	1881
Adj Flow Rate, veh/h	405	477
Adj No. of Lanes	403	477
Peak Hour Factor	0.77	0.77
Percent Heavy Veh, %	0.77	0.77
Cap, veh/h	568	483
Arrive On Green	0.30	483 0.30
Sat Flow, veh/h	0.30 1881	0.30 1599
Grp Volume(v), veh/h	405	477
Grp Sat Flow(s),veh/h/ln	1881	1599
Q Serve(g_s), s	16.8	26.0
Cycle Q Clear(g_c), s	16.8	26.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	568	483
V/C Ratio(X)	0.71	0.99
Avail Cap(c_a), veh/h	568	483
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	27.2	30.4
Incr Delay (d2), s/veh	4.2	37.5
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	9.3	16.5
LnGrp Delay(d),s/veh	31.4	68.0
LnGrp LOS	С	E
Approach Vol, veh/h	1040	
Approach Delay, s/veh	52.2	
Approach LOS	D	
Timer		
Timer		

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	19	0	0	0	0	53	1	420	14	37	540	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	70	70	70	80	80	80	93	93	93	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	0	0	0	0	66	1	452	15	42	614	11

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1192	1167	614	1159	1159	459	614	0	0	467	0	0
Stage 1	698	698	-	461	461	-	-	-	-	-	-	-
Stage 2	494	469	-	698	698	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	164	194	492	173	196	602	965	-	-	1094	-	-
Stage 1	431	442	-	581	565	-	-	-	-	-	-	-
Stage 2	557	561	-	431	442	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	142	186	492	168	188	602	965	-	-	1094	-	-
Mov Cap-2 Maneuver	142	186	-	168	188	-	-	-	-	-	-	-
Stage 1	431	425	-	580	564	-	-	-	-	-	-	-
Stage 2	495	560	-	414	425	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	36.2	11.7	0	0.5
HCM LOS	E	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	965	-	-	142	602	1094	-	-	
HCM Lane V/C Ratio	0.001	-	-	0.191	0.11	0.038	-	-	
HCM Control Delay (s)	8.7	-	-	36.2	11.7	8.4	-	-	
HCM Lane LOS	А	-	-	E	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.7	0.4	0.1	-	-	

Intersection												
Intersection Delay, s/veh	54											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	29	509	0	71	67	63	0	364	125	50
Peak Hour Factor	0.85	0.85	0.85	0.85	0.70	0.70	0.70	0.70	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	34	599	0	101	96	90	0	418	144	57
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		71.7				33.4				58.8		
HCM LOS		F				D				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					

Lane	NBLn1	NBLn2	FRFUJ	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	35%	100%	0%	
Vol Thru, %	0%	71%	5%	33%	0%	98%	
Vol Right, %	0%	29%	94%	31%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	364	175	540	201	108	240	
LT Vol	364	0	2	71	108	0	
Through Vol	0	125	29	67	0	236	
RT Vol	0	50	509	63	0	4	
Lane Flow Rate	418	201	635	287	148	329	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.491	1	0.729	0.398	0.838	
Departure Headway (Hd)	9.488	8.788	8.13	9.248	9.686	9.174	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	385	412	451	393	374	398	
Service Time	7.201	6.501	6.145	7.248	7.386	6.875	
HCM Lane V/C Ratio	1.086	0.488	1.408	0.73	0.396	0.827	
HCM Control Delay	77.6	19.7	71.7	33.4	18.6	44.6	
HCM Lane LOS	F	С	F	D	С	E	
HCM 95th-tile Q	11.9	2.6	12.9	5.6	1.9	7.8	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	108	236	4
Peak Hour Factor	0.73	0.73	0.73	0.73
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	148	323	5
Number of Lanes	0	1	1	0
	U		1	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		36.5		
HCM LOS		E		
		L		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

1.1 Turioisoo D1. u		uncy i	.u.								7.4	
	٦	-	\mathbf{i}	4	+	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	200	267	284	69	934	122	364	221	158	405	477	
v/c Ratio	1.22	0.24	0.40	0.61	0.85	0.21	0.78	0.21	0.73	0.78	0.88	
Control Delay	180.8	22.7	4.9	65.5	36.5	5.6	49.4	23.2	58.5	40.1	40.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	180.8	22.7	4.9	65.5	36.5	5.6	49.4	23.2	58.5	40.1	40.0	
Queue Length 50th (ft)	~76	58	0	39	257	0	105	47	88	206	184	
Queue Length 95th (ft)	#125	80	36	#98	318	34	#151	70	#139	252	235	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	164	1142	718	113	1207	615	487	1158	230	594	600	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.22	0.23	0.40	0.61	0.77	0.20	0.75	0.19	0.69	0.68	0.80	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	<u>††</u>	1		à	<u>††</u>	1	ሻሻ	≜ ⊅		٦	1
Volume (veh/h)	445	805	319	69	73	503	93	319	260	24	113	202
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1881	1881		1900	1881	1863	1881	1881	1900	1881	1863
Adj Flow Rate, veh/h	468	847	336		83	572	106	347	283	26	131	235
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86
Percent Heavy Veh, %	0	1	1		0	1	2	1	1	1	1	2
Cap, veh/h	516	1296	580		107	982	435	445	804	73	165	385
Arrive On Green	0.15	0.36	0.36		0.06	0.27	0.27	0.13	0.24	0.24	0.09	0.21
Sat Flow, veh/h	3510	3574	1599		1810	3574	1583	3476	3313	302	1792	1863
Grp Volume(v), veh/h	468	847	336		83	572	106	347	152	157	131	235
Grp Sat Flow(s), veh/h/ln	1755	1787	1599		1810	1787	1583	1738	1787	1828	1792	1863
Q Serve(g_s), s	9.8	14.8	12.7		3.4	10.3	3.9	7.2	5.3	5.3	5.4	8.6
Cycle Q Clear(g_c), s	9.8	14.8	12.7		3.4	10.3	3.9	7.2	5.3	5.3	5.4	8.6
Prop In Lane	1.00	14.0	1.00		1.00	10.5	1.00	1.00	0.0	0.17	1.00	0.0
Lane Grp Cap(c), veh/h	516	1296	580		107	982	435	445	434	444	165	385
V/C Ratio(X)	0.91	0.65	0.58		0.78	0.58	0.24	0.78	0.35	0.35	0.79	0.61
Avail Cap(c_a), veh/h	516	1520	680		121	1233	546	558	645	660	192	573
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1200	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.4	19.9	19.2		34.7	23.4	21.1	31.6	23.4	23.5	33.3	26.9
Incr Delay (d2), s/veh	19.6	0.8	0.9		23.9	0.6	0.3	5.5	0.5	23.5	17.7	1.6
	0.0	0.0	0.9		23.9	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	6.2	7.4	5.7		2.4	5.2	1.7	3.8	2.6	2.7	3.5	4.5
%ile BackOfQ(50%),veh/In			5.7 20.1					37.1		2.7		4.5 28.5
LnGrp Delay(d),s/veh	51.0 D	20.7 C	20.1 C		58.6 E	24.0	21.4 C		23.9 C		51.0	
LnGrp LOS	D		L		E	C	L	D		С	D	<u>C</u>
Approach Vol, veh/h		1651				761			656			602
Approach Delay, s/veh		29.2				27.4			30.9			34.2
Approach LOS		С				С			С			С
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.4	32.8	13.6	20.0	15.0	26.2	10.9	22.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	5.4	16.8	9.2	12.4	11.8	12.3	7.4	7.3				
Green Ext Time (p_c), s	0.0	8.8	0.4	3.1	0.0	8.2	0.0	4.0				
Intersection Summary												
HCM 2010 Ctrl Delay			29.9									
HCM 2010 LOS			С									
Notes												

Notes

User approved ignoring U-Turning movement.

Existing
PM Peak

	4
Movement	SBR
Land Configurations	1
Volume (veh/h)	203
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	236
Adj No. of Lanes	1
Peak Hour Factor	0.86
Percent Heavy Veh, %	2
Cap, veh/h	327
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	236
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	10.4
Cycle Q Clear(g_c), s	10.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	327
V/C Ratio(X)	0.72
Avail Cap(c_a), veh/h	487
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	27.7
Incr Delay (d2), s/veh	3.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	4.8
LnGrp Delay(d),s/veh	30.7
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	
TIMO	

2.8

Int Delay, s/veh

Movement	FDI	ГРТ		WDI				NDT		CDU	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	12	2	5	20	1	86	2	501	16	4	54	520	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	70	70	70	79	79	79	95	95	95	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	17	3	7	25	1	109	2	527	17	4	59	571	18

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1285	1247	571	1235	1239	540	571	0	0	653	544	0	0
Stage 1	690	699	-	540	540	-	-	-	-	-	-	-	-
Stage 2	595	548	-	695	699	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	142	173	520	153	175	542	1002	-	-	-	1025	-	-
Stage 1	435	442	-	526	521	-	-	-	-	-	-	-	-
Stage 2	491	517	-	433	442	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	113	173	520	149	175	542	1002	-	-	~ -15	~ -15	-	-
Mov Cap-2 Maneuver	113	173	-	149	175	-	-	-	-	-	-	-	-
Stage 1	434	442	-	525	520	-	-	-	-	-	-	-	-
Stage 2	391	516	-	424	442	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	34.5	21	0		
HCM LOS	D	С			

NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR	
1002	-	-	149	358	+	-	-	
0.002	-	-	0.182	0.378	-	-	-	
8.6	-	-	34.5	21	-	-	-	
А	-	-	D	С	-	-	-	
0	-	-	0.6	1.7	-	-	-	
	0.002 8.6 A 0	0.002 - 8.6 - A - 0 -	0.002 8.6 A 0	0.002 - 0.182 8.6 - 34.5 A - D 0 - 0.6	0.002 - 0.182 0.378 8.6 - 34.5 21 A - D C 0 - 0.6 1.7	0.002 - 0.182 0.378 - 8.6 - 34.5 21 - A - D C - 0 - 0.6 1.7 -	0.002 0.182 0.378 8.6 34.5 21 A - D C - 0 - 0.6 1.7 -	0.002 - 0.182 0.378 8.6 - 34.5 21 A - D C 0 - 0.6 1.7

~: Volume exceeds capacity \$: |

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

Kimley-Horn HCM 2010 TWSC

Intersection												
Intersection Delay, s/veh	48.7											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	48	495	0	27	37	35	0	479	257	37
Peak Hour Factor	0.90	0.90	0.90	0.90	0.70	0.70	0.70	0.70	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	53	550	0	39	53	50	0	510	273	39
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		63				14.7				52.2		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	27%	100%	0%					
Val Thru 0/		00/	070/	00/	270/	00/	000/					

Vol Left, %	100%	0%	0%	27%	100%	0%	
Vol Thru, %	0%	87%	9%	37%	0%	98%	
Vol Right, %	0%	13%	91%	35%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	479	294	545	99	27	157	
LT Vol	479	0	2	27	27	0	
Through Vol	0	257	48	37	0	154	
RT Vol	0	37	495	35	0	3	
Lane Flow Rate	510	313	606	141	30	174	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.636	1	0.314	0.074	0.403	
Departure Headway (Hd)	7.914	7.326	6.324	7.981	8.836	8.323	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	459	491	575	451	406	433	
Service Time	5.669	5.081	4.385	6.029	6.575	6.062	
HCM Lane V/C Ratio	1.111	0.637	1.054	0.313	0.074	0.402	
HCM Control Delay	70.6	22.1	63	14.7	12.3	16.6	
HCM Lane LOS	F	С	F	В	В	С	
HCM 95th-tile Q	13	4.4	14.5	1.3	0.2	1.9	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	154	3
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	30	171	3
Number of Lanes	0	1	1	0
	-			-
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		16		
HCM LOS		C		
		U		

Lane
El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٨	+	*	4	Ļ	•	<	†	*	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	468	847	336	161	572	106	347	309	131	235	236	
v/c Ratio	0.91	0.71	0.44	1.61	0.63	0.20	0.67	0.35	0.68	0.62	0.46	
Control Delay	58.3	26.1	4.5	348.1	28.8	2.0	40.1	24.3	56.8	36.3	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.3	26.1	4.5	348.1	28.8	2.0	40.1	24.3	56.8	36.3	7.2	
Queue Length 50th (ft)	117	183	0	~115	127	0	81	61	62	104	0	
Queue Length 95th (ft)	#252	278	55	#259	192	9	#157	102	#162	176	48	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	517	1526	875	100	1238	655	558	1286	192	575	652	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.56	0.38	1.61	0.46	0.16	0.62	0.24	0.68	0.41	0.36	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ~

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

1.1 Turiologo B1. (i ano y i	.									
	•	٠	+	*	F	4	Ļ	×	•	Ť	*	1
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		<u>ሕ</u> ግ	<u>††</u>	1		24	<u>††</u>	1	ሻሻ	∱î≽		۲
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.995		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3336	3374	1568	0	1805	3574	1583	3400	3522	0	1752
Flt Permitted		0.784							0.950			0.950
Satd. Flow (perm)	0	2753	3374	1568	0	1900	3574	1583	3400	3522	0	1752
Right Turn on Red				Yes				Yes			Yes	
Satd. Flow (RTOR)				284				122		4		
Link Speed (mph)			50				50			30		
Link Distance (ft)			437				631			452		
Travel Time (s)			6.0				8.6			10.3		
Intersection Summary												
Area Type:	Other											

	Ļ	4
Lane Group	SBT	SBR
Lane Configurations	1	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1881	1599
Flt Permitted		
Satd. Flow (perm)	1881	1599
Right Turn on Red		Yes
Satd. Flow (RTOR)		139
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center 2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	۶	→	\mathbf{r}	∢	←	•	•	Ť	*	>	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	†		۲	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.865			0.995				0.850
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.950					0.950			0.950		
Satd. Flow (perm)	0	1770	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

		Taricis									~ ~ ~	
	٦	-	\mathbf{r}	4	-	•	•	Ť	*	×	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		<u>۲</u>	4î		<u>۲</u>	¢î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.873			0.958			0.957			0.998	
Flt Protected					0.983		0.950			0.950		
Satd. Flow (prot)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Flt Permitted					0.983		0.950			0.950		
Satd. Flow (perm)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2100			982			1162			698	
Travel Time (s)		47.7			22.3			17.6			10.6	
Intersection Summary												

Area Type:

Other

Appendix C:

Analysis Worksheets for Existing (2015) plus Proposed Project Conditions

	₫	۶	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	††	1		۲	††	1	ኘኘ	≜ ¶≽		۲
Volume (veh/h)	1	161	217	230	15	47	813	106	307	180	6	122
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1810	1776	1845		1900	1881	1863	1845	1863	1900	1845
Adj Flow Rate, veh/h		199	268	284		54	934	122	365	214	7	158
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.81	0.81	0.81		0.87	0.87	0.87	0.84	0.84	0.84	0.77
Percent Heavy Veh, %		5	7	3		0	1	2	3	2	2	3
Cap, veh/h		190	1092	508		69	1091	483	439	1125	37	192
Arrive On Green		0.06	0.32	0.32		0.04	0.31	0.31	0.13	0.32	0.32	0.11
Sat Flow, veh/h		3344	3374	1568		1810	3574	1583	3408	3498	114	1757
Grp Volume(v), veh/h		199	268	284		54	934	122	365	108	113	158
Grp Sat Flow(s), veh/h/ln		1672	1687	1568		1810	1787	1583	1704	1770	1843	1757
Q Serve(g_s), s		5.0	5.1	13.1		2.6	21.6	5.1	9.2	3.9	3.9	7.7
Cycle Q Clear(q_c), s		5.0	5.1	13.1		2.6	21.6	5.1	9.2	3.9	3.9	7.7
Prop In Lane		1.00	0.1	1.00		1.00	21.0	1.00	1.00	0.7	0.06	1.00
Lane Grp Cap(c), veh/h		190	1092	508		69	1091	483	439	569	592	192
V/C Ratio(X)		1.04	0.25	0.56		0.78	0.86	0.25	0.83	0.19	0.19	0.82
Avail Cap(c_a), veh/h		190	1092	508		103	1152	510	466	569	592	220
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.4	21.8	24.5		41.8	28.7	23.0	37.3	21.5	21.5	38.3
Incr Delay (d2), s/veh		77.5	0.1	1.4		19.3	6.3	0.3	11.6	0.2	0.2	19.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.3	2.4	5.8		1.7	11.6	2.3	5.0	1.9	2.0	4.8
LnGrp Delay(d),s/veh		118.9	21.9	25.9		61.2	35.0	23.2	48.9	21.7	21.7	58.0
LnGrp LOS		F	C	C		E	C	C	D	C	C	E
Approach Vol, veh/h		•	751	0			1110	0	0	586	<u> </u>	
Approach Delay, s/veh			49.1				35.0			38.7		
Approach LOS			ч <i>л</i> .т				00.0 C			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.4	34.1	15.3	31.0	9.0	32.5	13.6	32.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	4.0 5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+11) , s	4.6	20.3 15.1	12.0	20.5	7.0	20.5	9.7	5.9				
Green Ext Time (p_c), s	4.0 0.0	7.1	0.1	0.0	0.0	3.2	9.7	5.9				
Intersection Summary	0.0	7.1	5.1	0.0	0.0	5.2	0.1	5.7				
· · · · · · · · · · · · · · · · · · ·			12.0									
HCM 2010 Ctrl Delay			43.8									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	ţ	~
Movement	SBT	SBR
Lane Configurations	1	1
Volume (veh/h)	312	367
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1881	1881
Adj Flow Rate, veh/h	405	477
Adj No. of Lanes	1	1
Peak Hour Factor	0.77	0.77
Percent Heavy Veh, %	1	1
Cap, veh/h	568	483
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1881	1599
Grp Volume(v), veh/h	405	477
Grp Sat Flow(s), veh/h/ln	1881	1599
Q Serve(g_s), s	16.8	26.1
Cycle Q Clear(q_c), s	16.8	26.1
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	568	483
V/C Ratio(X)	0.71	0.99
Avail Cap(c_a), veh/h	568	483
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	27.3	30.5
Incr Delay (d2), s/veh	4.2	37.8
Initial Q Delay(d3), s/veh	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.3	16.5
LnGrp Delay(d),s/veh	31.5	68.3
LnGrp LOS	С	E
Approach Vol, veh/h	1040	
Approach Delay, s/veh	52.4	
Approach LOS	D	
Timer		

Timer

1.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	20	0	1	0	0	53	3	420	14	37	540	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	70	70	70	80	80	80	93	93	93	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	29	0	1	0	0	66	3	452	15	42	614	14

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1197	1171	614	1164	1164	459	614	0	0	467	0	0
Stage 1	698	698	-	466	466	-	-	-	-	-	-	-
Stage 2	499	473	-	698	698	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	163	193	492	171	194	602	965	-	-	1094	-	-
Stage 1	431	442	-	577	562	-	-	-	-	-	-	-
Stage 2	554	558	-	431	442	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	140	185	492	165	186	602	965	-	-	1094	-	-
Mov Cap-2 Maneuver	140	185	-	165	186	-	-	-	-	-	-	-
Stage 1	430	425	-	575	560	-	-	-	-	-	-	-
Stage 2	491	556	-	413	425	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	36.2	11.7	0.1	0.5
HCM LOS	E	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	965	-	-	145	602	1094	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.207	0.11	0.038	-	-	
HCM Control Delay (s)	8.7	-	-	36.2	11.7	8.4	-	-	
HCM Lane LOS	А	-	-	E	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.7	0.4	0.1	-	-	

Intersection												
Intersection Delay, s/veh	53.8											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	29	510	0	71	67	63	0	366	125	50
Peak Hour Factor	0.85	0.85	0.85	0.85	0.70	0.70	0.70	0.70	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	34	600	0	101	96	90	0	421	144	57
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		71.6				33.4				58.8		
HCM LOS		F				D				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	35%	100%	0%					
Vol Thru %		0%	71%	5%	22%	0%	98%					

Vol Left, %	100%	0%	0%	35%	100%	0%	
Vol Thru, %	0%	71%	5%	33%	0%	98%	
Vol Right, %	0%	29%	94%	31%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	366	175	541	201	108	240	
LT Vol	366	0	2	71	108	0	
Through Vol	0	125	29	67	0	236	
RT Vol	0	50	510	63	0	4	
Lane Flow Rate	421	201	636	287	148	329	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.491	1	0.729	0.398	0.829	
Departure Headway (Hd)	9.489	8.789	8.131	9.145	9.686	9.175	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	387	412	452	393	374	398	
Service Time	7.191	6.491	6.133	7.234	7.386	6.875	
HCM Lane V/C Ratio	1.088	0.488	1.407	0.73	0.396	0.827	
HCM Control Delay	77.5	19.7	71.6	33.4	18.6	43.4	
HCM Lane LOS	F	С	F	D	С	E	
HCM 95th-tile Q	11.9	2.6	12.9	5.7	1.9	7.6	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	108	236	4
Peak Hour Factor	0.73	0.73	0.73	0.73
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	148	323	5
Number of Lanes	0	1	1	0
	U		•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		ן 25 ד		
<u> </u>		35.7		
HCM LOS		E		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	608	2	0	1488	0	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
/eh in Median Storage, #	0	-	-	0	0	-	
irade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Ivmt Flow	661	2	0	1617	0	1	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	661	0	1470	330	
Stage 1	-	-	-	-	661	-	
Stage 2	-	-	-	-	809	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	923	-	118	666	
Stage 1	-	-	-	-	475	-	
Stage 2	-	-	-	-	398	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	923	-	118	666	
Mov Cap-2 Maneuver	-	-	-	-	118	-	
Stage 1	-	-	-	-	475	-	
Stage 2	-	-	-	-	398	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	10.4	
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	666	-	-	923	-	
HCM Lane V/C Ratio	0.002	-	-	-	-	
HCM Control Delay (s)	10.4	-	-	0	-	
HCM Lane LOS	В	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	19	11	4	2	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	12	4	2	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	16	0	-	0	35	14	
Stage 1	-	-	-	-	14	-	
Stage 2	-	-	-	-	21	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1602	-	-	-	978	1066	
Stage 1	-	-	-	-	1009	-	
Stage 2	-	-	-	-	1002	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1602	-	-	-	978	1066	
Mov Cap-2 Maneuver	-	-	-	-	978	-	
Stage 1	-	-	-	-	1009	-	
Stage 2	-	-	-	-	1002	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1602	-	-	- 978
HCM Lane V/C Ratio	-	-	-	- 0.002
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-+	\mathbf{r}	4	←	×.	•	Ť	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	200	268	284	71	934	122	365	221	158	405	477	
v/c Ratio	1.22	0.26	0.42	0.81	0.85	0.21	0.78	0.21	0.73	0.78	0.88	
Control Delay	180.8	23.3	5.1	98.3	36.5	5.6	49.5	23.2	58.5	40.1	40.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	180.8	23.3	5.1	98.3	36.5	5.6	49.5	23.2	58.5	40.1	40.0	
Queue Length 50th (ft)	~76	59	0	41	257	0	105	47	88	206	184	
Queue Length 95th (ft)	#125	80	36	#115	318	34	#152	70	#139	252	235	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	164	1139	717	88	1206	615	486	1158	230	594	600	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.22	0.24	0.40	0.81	0.77	0.20	0.75	0.19	0.69	0.68	0.80	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	¥	F	4	+	×	1	1	1	1	¥
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ኘኘ	††	1		۲	<u>††</u>	1	ኘኘ	∱ Ъ		۲	1
Volume (veh/h)	445	807	319	69	75	503	93	322	260	24	113	202
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1881	1881		1900	1881	1863	1881	1881	1900	1881	1863
Adj Flow Rate, veh/h	468	849	336		85	572	106	350	283	26	131	235
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86
Percent Heavy Veh, %	0	1	1		0	1	2	1	1	1	1	2
Cap, veh/h	516	1290	577		110	982	435	448	806	74	165	385
Arrive On Green	0.15	0.36	0.36		0.06	0.27	0.27	0.13	0.24	0.24	0.09	0.21
Sat Flow, veh/h	3510	3574	1599		1810	3574	1583	3476	3313	302	1792	1863
Grp Volume(v), veh/h	468	849	336		85	572	106	350	152	157	131	235
Grp Sat Flow(s), veh/h/ln	1755	1787	1599		1810	1787	1583	1738	1787	1828	1792	1863
Q Serve(g_s), s	9.8	14.9	12.7		3.5	10.3	3.9	7.3	5.3	5.3	5.4	8.6
Cycle Q Clear(g_c), s	9.8	14.9	12.7		3.5	10.3	3.9	7.3	5.3	5.3	5.4	8.6
Prop In Lane	1.00	14.7	1.00		1.00	10.5	1.00	1.00	0.0	0.17	1.00	0.0
Lane Grp Cap(c), veh/h	516	1290	577		110	982	435	448	435	445	165	385
V/C Ratio(X)	0.91	0.66	0.58		0.78	0.58	0.24	0.78	0.35	0.35	0.79	0.61
Avail Cap(c_a), veh/h	516	1518	679		121	1231	545	557	644	659	191	572
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.4	20.1	19.4		34.7	23.5	21.1	31.6	23.4	23.5	33.3	27.0
Incr Delay (d2), s/veh	19.8	0.8	0.9		24.5	0.6	0.3	5.7	0.5	0.5	17.8	1.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.2	7.5	5.7		2.5	5.2	1.7	3.9	2.6	2.7	3.5	4.5
LnGrp Delay(d),s/veh	51.3	20.9	20.3		59.2	24.0	21.4	37.3	23.9	23.9	51.1	28.5
LnGrp LOS	51.5 D	20.7 C	20.3 C		57.2 E	24.0 C	21.4 C	57.5 D	23.7 C	23.7 C	D	20.3 C
Approach Vol, veh/h	U	1653	C		L	763	C	U	659	C	U	602
		29.4				27.6			31.0			34.3
Approach Delay, s/veh Approach LOS		29.4 C				27.0 C			51.0 C			34.3 C
Approach LOS		C				C			C			C
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	32.7	13.7	20.0	15.0	26.3	10.9	22.7				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	5.5	16.9	9.3	12.4	11.8	12.3	7.4	7.3				
Green Ext Time (p_c), s	0.0	8.8	0.4	3.1	0.0	8.2	0.0	4.0				
Intersection Summary												
HCM 2010 Ctrl Delay			30.1									
HCM 2010 LOS			С									
Notes												

Notes

User approved ignoring U-Turning movement.

	-
Movement	SBR
Land Configurations	
Volume (veh/h)	203
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	236
Adj No. of Lanes	230
Peak Hour Factor	0.86
Percent Heavy Veh, %	2
Cap, veh/h	327
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	236
Grp Sat Flow(s), veh/h/ln	1583
Q Serve(\underline{g}_s), s	10.4
Cycle Q Clear(g_c), s	10.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	327
V/C Ratio(X)	0.72
Avail Cap(c_a), veh/h	486
HCM Platoon Ratio	480
Upstream Filter(I)	1.00
	27.7
Uniform Delay (d), s/veh	3.0
Incr Delay (d2), s/veh	3.0 0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/In	0.0 4.8
	4.8 30.7
LnGrp Delay(d),s/veh	
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

Timer

3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	15	2	8	20	1	86	4	501	16	4	54	520	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	70	70	70	79	79	79	95	95	95	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	3	11	25	1	109	4	527	17	4	59	571	20

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1289	1252	571	1241	1243	540	571	0	0	653	544	0	0
Stage 1	690	699	-	544	544	-	-	-	-	-	-	-	-
Stage 2	599	553	-	697	699	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	141	172	520	152	174	542	1002	-	-	-	1025	-	-
Stage 1	435	442	-	523	519	-	-	-	-	-	-	-	-
Stage 2	488	514	-	431	442	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	112	171	520	146	173	542	1002	-	-	~ -15	~ -15	-	-
Mov Cap-2 Maneuver	112	171	-	146	173	-	-	-	-	-	-	-	-
Stage 1	433	442	-	521	517	-	-	-	-	-	-	-	-
Stage 2	387	512	-	419	442	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	35	21.3	0.1		
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1002	-	-	155	355	+	-	-	
HCM Lane V/C Ratio	0.004	-	-	0.23	0.382	-	-	-	
HCM Control Delay (s)	8.6	-	-	35	21.3	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.8	1.7	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	48.8											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	48	498	0	27	37	35	0	481	257	37
Peak Hour Factor	0.90	0.90	0.90	0.90	0.70	0.70	0.70	0.70	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	53	553	0	39	53	50	0	512	273	39
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		63				14.7				52.2		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2					
Vol Left, %		100%	0%	0%	27%	100%	0%					

Lane	INBLUI	INBLU2	ERTUI	WBLUI	SRFUT	SBLU2	
Vol Left, %	100%	0%	0%	27%	100%	0%	
Vol Thru, %	0%	87%	9%	37%	0%	98%	
Vol Right, %	0%	13%	91%	35%	0%	2%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	481	294	548	99	27	157	
LT Vol	481	0	2	27	27	0	
Through Vol	0	257	48	37	0	154	
RT Vol	0	37	498	35	0	3	
Lane Flow Rate	512	313	609	141	30	174	
Geometry Grp	7	7	2	2	7	7	
Degree of Util (X)	1	0.637	1	0.314	0.074	0.403	
Departure Headway (Hd)	7.915	7.328	6.325	7.983	8.836	8.323	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	461	491	572	451	406	433	
Service Time	5.669	5.081	4.385	6.029	6.575	6.062	
HCM Lane V/C Ratio	1.111	0.637	1.065	0.313	0.074	0.402	
HCM Control Delay	70.6	22.1	63	14.7	12.3	16.6	
HCM Lane LOS	F	С	F	В	В	С	
HCM 95th-tile Q	13	4.4	14.5	1.3	0.2	1.9	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	154	3
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	30	171	3
Number of Lanes	0	1	1	0
	U		•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		16		
<u> </u>				
HCM LOS		С		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	1569	2	0	1028	0	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1705	2	0	1117	0	2	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1705	0	2264	853	
Stage 1	-	-	-	-	1705	-	
Stage 2	-	-	-	-	559	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	369	-	34	302	
Stage 1	-	-	-	-	132	-	
Stage 2	-	-	-	-	536	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	369	-	34	302	
Mov Cap-2 Maneuver	-	-	-	-	34	-	
Stage 1	-	-	-	-	132	-	
Stage 2	-	-	-	-	536	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	17	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	302	-	-	369	-	
HCM Lane V/C Ratio	0.007	-	-	-	-	
HCM Control Delay (s)	17	-	-	0	-	
HCM Lane LOS	С	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

1.1

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	19	19	4	6	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	21	21	4	7	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	25	0	-	0	44	23	
Stage 1	-	-	-	-	23	-	
Stage 2	-	-	-	-	21	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1589	-	-	-	967	1054	
Stage 1	-	-	-	-	1000	-	
Stage 2	-	-	-	-	1002	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1589	-	-	-	967	1054	
Mov Cap-2 Maneuver	-	-	-	-	967	-	
Stage 1	-	-	-	-	1000	-	
Stage 2	-	-	-	-	1002	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1589	-	-	- 967
HCM Lane V/C Ratio	-	-	-	- 0.007
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	$\mathbf{\hat{z}}$	∢	+	×	1	Ť	1	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	468	849	336	163	572	106	350	309	131	235	236	
v/c Ratio	0.91	0.71	0.44	1.65	0.63	0.20	0.67	0.35	0.69	0.62	0.46	
Control Delay	58.4	26.2	4.5	357.7	28.9	2.0	40.3	24.3	56.9	36.3	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.4	26.2	4.5	357.7	28.9	2.0	40.3	24.3	56.9	36.3	7.2	
Queue Length 50th (ft)	117	184	0	~117	127	0	82	61	62	104	0	
Queue Length 95th (ft)	#252	278	55	#261	192	9	#160	102	#162	176	48	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	517	1525	875	99	1237	655	558	1285	191	575	651	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.56	0.38	1.65	0.46	0.16	0.63	0.24	0.69	0.41	0.36	
Intersection Summary												

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	4	٦	→	¥	F	¥	+	×.	•	t	۲	1
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	<u></u> †î⊧		٦
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.995		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3336	3374	1568	0	1805	3574	1583	3400	3522	0	1752
Flt Permitted		0.784				0.784			0.950			0.950
Satd. Flow (perm)	0	2753	3374	1568	0	1490	3574	1583	3400	3522	0	1752
Right Turn on Red				Yes				Yes			Yes	
Satd. Flow (RTOR)				284				122		4		
Link Speed (mph)			50				50			30		
Link Distance (ft)			437				631			452		
Travel Time (s)			6.0				8.6			10.3		
Intersection Summary												

Area Type:

Other

	Ļ	~
Lane Group	SBT	SBR
Lane Configurations	†	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1881	1599
Flt Permitted		
Satd. Flow (perm)	1881	1599
Right Turn on Red		Yes
Satd. Flow (RTOR)		139
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center

2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	۶	→	\mathbf{r}	<	←	•	1	Ť	1	1	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۳.	↑		ሻ	↑	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.995			0.865			0.995				0.850
Flt Protected		0.954					0.950			0.950		
Satd. Flow (prot)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.954					0.950			0.950		
Satd. Flow (perm)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			2395			452	
Travel Time (s)		6.0			16.4			54.4			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٨	→	\mathbf{F}	4	4	×.	•	Ť	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	4Î		ľ	4Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.873			0.958			0.957			0.998	
Flt Protected					0.983		0.950			0.950		
Satd. Flow (prot)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Flt Permitted					0.983		0.950			0.950		
Satd. Flow (perm)	0	1626	0	0	1754	0	1770	1783	0	1770	1859	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2395			982			1162			698	
Travel Time (s)		54.4			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

	-	\mathbf{r}	4	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>††</u>	1		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3539	1583	0	3539	0	1611
Flt Permitted						
Satd. Flow (perm)	3539	1583	0	3539	0	1611
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	٨	-	-	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ب ا	4		Y	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.966			
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1799	0	1770	0
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1799	0	1770	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Appendix D:

Near-Term (2025) Traffic Volumes

El Dorado Hills Memory Care Center: Traffic Impact Analysis

Kimley **»Horn**

2025 Model Average Daily Traffic Volumes 16-0582 2H 316 of 427

Int 1 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Green Valley Rd

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

16-0582 2H 317 of 427

Int 2 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
	Francisco Dr
E/W Street:	Embarcadero Dr / Cambria Way

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

Int 3 AM Peak Volumes

Scenario:	Near-Term (2025) Conditions
N/S Street:	El Dorado Hills Blvd
E/W Street:	Francisco Dr

K:\SCN_TPTO\El Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx

Int 1 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions
	Francisco Dr
E/W Street:	Green Valley Rd

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 1 PM

Int 2 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions
N/S Street:	Francisco Dr
E/W Street:	Embarcadero Dr / Cambria Way

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 2 PM

Int 3 PM Peak Volumes

0

Scenario:	Near-Term (2025) Conditions
N/S Street:	El Dorado Hills Blvd
E/W Street:	Francisco Dr

K:\SCN_TPTO\EI Dorado Hills Memory Care Center (TIA) - 097906002\03 Analysis Files\Volume Files\Turn32_2025_v2.xlsx Int 3 PM

Appendix E:

Analysis Worksheets for Near-Term (2025) Conditions

	₫	۶	-	\mathbf{r}	F	4	+	×.	1	Ť	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	∱ î≽		٦
Volume (veh/h)	2	192	266	217	15	44	974	123	280	161	6	141
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1863		1872	1863	1863	1863	1863	1900	1863
Adj Flow Rate, veh/h		209	289	236		48	1059	134	304	175	7	153
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		197	1212	542		61	1130	506	385	1075	43	187
Arrive On Green		0.06	0.34	0.34		0.03	0.32	0.32	0.11	0.31	0.31	0.11
Sat Flow, veh/h		3442	3539	1583		1783	3539	1583	3442	3470	138	1774
Grp Volume(v), veh/h		209	289	236		48	1059	134	304	89	93	153
Grp Sat Flow(s),veh/h/ln		1721	1770	1583		1783	1770	1583	1721	1770	1838	1774
Q Serve(g_s), s		5.0	5.1	10.1		2.3	25.4	5.5	7.5	3.2	3.2	7.4
Cycle Q Clear(g_c), s		5.0	5.1	10.1		2.3	25.4	5.5	7.5	3.2	3.2	7.4
Prop In Lane		1.00	0.1	1.00		1.00	2011	1.00	1.00	0.2	0.08	1.00
Lane Grp Cap(c), veh/h		197	1212	542		61	1130	506	385	548	570	187
V/C Ratio(X)		1.06	0.24	0.44		0.79	0.94	0.26	0.79	0.16	0.16	0.82
Avail Cap(c_a), veh/h		197	1212	542		102	1146	513	473	557	578	223
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.2	20.6	22.2		41.9	28.9	22.1	37.8	21.9	21.9	38.3
Incr Delay (d2), s/veh		81.3	0.1	0.6		19.7	14.0	0.3	7.2	0.1	0.1	18.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.6	2.5	4.4		1.5	14.5	2.4	4.0	1.6	1.7	4.5
LnGrp Delay(d),s/veh		122.5	20.7	22.8		61.6	42.8	22.4	45.0	22.1	22.1	56.3
LnGrp LOS		F	C	C		E	D	С	D	С	C	E
Approach Vol, veh/h			734	<u> </u>			1241		5	486	•	
Approach Delay, s/veh			50.3				41.4			36.4		
Approach LOS			D				D			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.0	35.6	3 13.8	4 31.0	9.0	33.6	13.2	o 31.6				
	4.0	5.7	4.0			5.7	4.0					
Change Period (Y+Rc), s Max Green Setting (Gmax), s	4.0 5.0	28.3	4.0	4.5 26.5	4.0 5.0	28.3	4.0	4.5 27.5				
Max Q Clear Time (q_c+11) , s				26.5 27.0				27.5 5.2				
Green Ext Time (p_c), s	4.3 0.0	12.1 8.8	9.5 0.3	27.0	7.0 0.0	27.4 0.5	9.4 0.1	5.2 4.8				
		0.0	0.5	0.0	0.0	0.5	0.1	4.0				
Intersection Summary			A A . /									
HCM 2010 Ctrl Delay			44.6									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.
	-
Movement SBT	SBR
Lane Configurations	1
Volume (veh/h) 274	424
Number 4	14
Initial Q (Qb), veh 0	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj 1.00	1.00
Adj Sat Flow, veh/h/ln 1863	1863
Adj Flow Rate, veh/h 298	461
Adj No. of Lanes 1	1
Peak Hour Factor 0.92	0.92
Percent Heavy Veh, % 2	2
Cap, veh/h 565	480
Arrive On Green 0.30	0.30
Sat Flow, veh/h 1863	1583
Grp Volume(v), veh/h 298	461
Grp Sat Flow(s), veh/h/ln 1863	1583
Q Serve(g_s), s 11.6	25.0
Cycle Q Clear(g_c), s 11.6	25.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h 565	480
V/C Ratio(X) 0.53	0.96
Avail Cap(c_a), veh/h 565	480
HCM Platoon Ratio 1.00	1.00
Upstream Filter(I) 1.00	1.00
Uniform Delay (d), s/veh 25.3	29.9
Incr Delay (d2), s/veh 0.9	31.1
Initial Q Delay(d3), s/veh 0.0	0.0
%ile BackOfQ(50%),veh/ln 6.1	15.0
LnGrp Delay(d),s/veh 26.2	61.0
LnGrp LOS C	E
Approach Vol, veh/h 912	
Approach Delay, s/veh 48.8	
Approach LOS D	
Timer	

1.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	23	0	0	0	0	54	1	370	12	38	484	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	0	0	0	0	59	1	402	13	41	526	14

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1049	1026	526	1020	1020	409	526	0	0	415	0	0
Stage 1	609	609	-	411	411	-	-	-	-	-	-	-
Stage 2	440	417	-	609	609	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	205	235	552	215	237	642	1041	-	-	1144	-	-
Stage 1	482	485	-	618	595	-	-	-	-	-	-	-
Stage 2	596	591	-	482	485	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	181	226	552	209	228	642	1041	-	-	1144	-	-
Mov Cap-2 Maneuver	181	226	-	209	228	-	-	-	-	-	-	-
Stage 1	482	468	-	617	594	-	-	-	-	-	-	-
Stage 2	541	590	-	465	468	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	28.1	11.2	0	0.6
HCM LOS	D	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1041	-	-	181	642	1144	-	-
HCM Lane V/C Ratio	0.001	-	-	0.138	0.091	0.036	-	-
HCM Control Delay (s)	8.5	-	-	28.1	11.2	8.3	-	-
HCM Lane LOS	А	-	-	D	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.5	0.3	0.1	-	-

Intersection												
Intersection Delay, s/veh	39.8											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	28	454	0	80	60	61	0	317	117	62
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	2	30	493	0	87	65	66	0	345	127	67
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		65.6				22.8				34		
HCM LOS		F				С				D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				
Vol Left, %		100%	0%	7%	0%	40%	100%	0%				

Laile	NDLIII	NDLIIZ	LDLIII	EDLIIZ	VVDLIII	SDLITT	SDLIIZ	
Vol Left, %	100%	0%	7%	0%	40%	100%	0%	
Vol Thru, %	0%	65%	93%	0%	30%	0%	97%	
Vol Right, %	0%	35%	0%	100%	30%	0%	3%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	317	179	30	454	201	102	228	
LT Vol	317	0	2	0	80	102	0	
Through Vol	0	117	28	0	60	0	222	
RT Vol	0	62	0	454	61	0	6	
Lane Flow Rate	345	195	33	493	218	111	248	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	0.841	0.435	0.076	1	0.552	0.282	0.594	
Departure Headway (Hd)	8.789	8.047	8.391	7.633	9.102	9.153	8.635	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	413	448	427	474	398	394	419	
Service Time	6.527	5.785	6.147	5.389	7.144	6.895	6.376	
HCM Lane V/C Ratio	0.835	0.435	0.077	1.04	0.548	0.282	0.592	
HCM Control Delay	43.7	16.9	11.8	69.2	22.8	15.5	23.3	
HCM Lane LOS	E	С	В	F	С	С	С	
HCM 95th-tile Q	8	2.2	0.2	13.3	3.2	1.1	3.7	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	102	222	6
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	111	241	7
Number of Lanes	0	1	1	0
	Ŭ	•	•	Ŭ
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		20.9		
HCM LOS		C		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{r}	4	←	•	1	Ť	>	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	211	289	236	64	1059	134	304	182	153	298	461	
v/c Ratio	1.24	0.23	0.33	0.58	0.92	0.22	0.67	0.19	0.71	0.60	0.88	
Control Delay	184.8	22.1	4.7	63.4	42.4	5.3	44.3	23.1	56.6	32.7	40.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	184.8	22.1	4.7	63.4	42.4	5.3	44.3	23.1	56.6	32.7	40.6	
Queue Length 50th (ft)	~80	64	0	36	307	0	86	38	85	142	175	
Queue Length 95th (ft)	#151	96	50	#96	#441	39	128	64	#174	223	#341	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	170	1243	709	110	1184	618	487	1147	230	583	589	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	0.23	0.33	0.58	0.89	0.22	0.62	0.16	0.67	0.51	0.78	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\rightarrow	F	4	+	×.	1	Ť	1	1	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	††	1		۲	††	1	ካካ	≜ †⊳		۲	<u>↑</u>
Volume (veh/h)	503	964	347	65	85	618	111	378	292	31	134	217
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863		1879	1863	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	547	1048	377		92	672	121	411	317	34	146	236
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2		2	2	2	2	2	2	2	2
Cap, veh/h	460	1295	579		109	1037	464	487	824	88	172	392
Arrive On Green	0.13	0.37	0.37		0.06	0.29	0.29	0.14	0.26	0.26	0.10	0.21
Sat Flow, veh/h	3442	3539	1583		1789	3539	1583	3442	3228	344	1774	1863
Grp Volume(v), veh/h	547	1048	377		92	672	121	411	173	178	146	236
Grp Sat Flow(s), veh/h/ln	1721	1770	1583		1789	1770	1583	1721	1770	1802	1774	1863
Q Serve(g_s), s	11.0	22.0	16.3		4.2	13.6	4.8	9.6	6.6	6.7	6.7	9.4
Cycle Q Clear(g_c), s	11.0	22.0	16.3		4.2	13.6	4.8	9.6	6.6	6.7	6.7	9.4
Prop In Lane	1.00	22.0	1.00		1.00	15.0	1.00	1.00	0.0	0.19	1.00	7.4
Lane Grp Cap(c), veh/h	460	1295	579		109	1037	464	487	452	460	172	392
V/C Ratio(X)	1.19	0.81	0.65		0.85	0.65	0.26	0.84	0.38	0.39	0.85	0.60
Avail Cap(c_a), veh/h	460	1367	611		109	1109	496	502	580	591	172	520
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.7	23.5	21.7		38.3	25.4	22.3	34.5	25.3	25.3	36.6	29.4
Incr Delay (d2), s/veh	105.3	3.6	2.3		42.9	1.2	0.3	12.2	0.5	0.5	30.5	1.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		42.9	0.0	0.3	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.9	11.3	7.5		3.4	6.8	2.1	5.4	3.3	3.4	4.7	5.0
LnGrp Delay(d),s/veh	141.0	27.1	24.0		3.4 81.2	26.6	2.1	46.6	25.8	25.9	67.1	30.9
LnGrp LOS	141.0 F	27.1 C	24.0 C		61.2 F	20.0 C	22.0 C	40.0 D	25.8 C	20.9 C	07.1 E	30.9 C
	F	1972	C		Г	885	C	U		U	L	
Approach Vol, veh/h									762			636
Approach Delay, s/veh		58.1				31.7			37.1			41.2
Approach LOS		E				С			D			D
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.0	35.8	15.7	21.9	15.0	29.8	12.0	25.5				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (g_c+I1), s	6.2	24.0	11.6	14.4	13.0	15.6	8.7	8.7				
Green Ext Time (p_c), s	0.0	6.2	0.1	2.9	0.0	7.7	0.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			46.3									
HCM 2010 LOS			40.3 D									
Notes												
Licor approved ignoring LL Tur												

User approved ignoring U-Turning movement.

	-
Movement	SBR
Land Configurations	
Volume (veh/h)	234
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Peu-Bike Auj(A_pb1) Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Sat Flow, ven/h/h	254
Adj No. of Lanes	204
Peak Hour Factor	0.92
	0.92
Percent Heavy Veh, %	334
Cap, veh/h	
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	254
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	12.4
Cycle Q Clear(g_c), s	12.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	334
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	442
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.6
Incr Delay (d2), s/veh	5.4
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	5.9
LnGrp Delay(d),s/veh	36.0
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timor	

Timer

2.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Movement	EDL	EDI	EDK	VVDL	VVDI	VVDK	INDL	INDI	NDK	SDU	SDL	SDI	JDK
Vol, veh/h	15	2	8	18	1	91	4	588	15	7	57	567	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	2	2	2
Mvmt Flow	16	2	9	20	1	99	4	639	16	8	62	616	20

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1446	1419	616	1402	1411	655	616	0	0	754	655	0	0
Stage 1	740	755	-	656	656	-	-	-	-	-	-	-	-
Stage 2	706	664	-	746	755	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	137	491	117	138	466	964	-	-	-	932	-	-
Stage 1	409	417	-	454	462	-	-	-	-	-	-	-	-
Stage 2	427	458	-	405	417	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	85	136	491	113	137	466	964	-	-	~ -9	~ -9	-	-
Mov Cap-2 Maneuver	85	136	-	113	137	-	-	-	-	-	-	-	-
Stage 1	407	417	-	452	460	-	-	-	-	-	-	-	-
Stage 2	334	456	-	396	417	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	43.6	24.3	0.1		
HCM LOS	Е	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	964	-	-	120	304	+	-	-	
HCM Lane V/C Ratio	0.005	-	-	0.226	0.393	-	-	-	
HCM Control Delay (s)	8.8	-	-	43.6	24.3	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.8	1.8	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 3)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	46.1											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	38	76	479	0	4	5 9	40	0	499	188	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	41	83	521	0	4	64	43	0	542	204	5
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		49.5				14.2				55.4		
HCM LOS		E				В				F		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				

Lane	NRLUI	INBLN2	EBTUI	EBLN2	WBLUI	SBLUI	SBLN2	
Vol Left, %	100%	0%	33%	0%	4%	100%	0%	
Vol Thru, %	0%	97%	67%	0%	57%	0%	64%	
Vol Right, %	0%	3%	0%	100%	39%	0%	36%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	499	193	114	479	103	27	136	
LT Vol	499	0	38	0	4	27	0	
Through Vol	0	188	76	0	59	0	87	
RT Vol	0	5	0	479	40	0	49	
Lane Flow Rate	542	210	124	521	112	29	148	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	1	0.431	0.261	0.973	0.257	0.071	0.329	
Departure Headway (Hd)	7.923	7.391	7.591	6.726	8.257	8.767	8.012	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	456	485	473	541	434	408	448	
Service Time	5.699	5.167	5.337	4.473	6.326	6.538	5.783	
HCM Lane V/C Ratio	1.189	0.433	0.262	0.963	0.258	0.071	0.33	
HCM Control Delay	70.7	15.7	13	58.2	14.2	12.2	14.7	
HCM Lane LOS	F	С	В	F	В	В	В	
HCM 95th-tile Q	13	2.1	1	13.1	1	0.2	1.4	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	87	49
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	29	95	53
Number of Lanes	0	1	1	0
	Ū	•	•	Ū
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		14.3		
HCM LOS		В		

Lane

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{F}	∢	←	×.	1	Ť	5	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	547	1048	377	163	672	121	411	351	146	236	254	
v/c Ratio	1.16	0.81	0.46	1.77	0.66	0.21	0.80	0.40	0.82	0.64	0.52	
Control Delay	127.8	30.0	4.4	418.8	29.3	2.7	48.6	26.0	74.8	38.7	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	127.8	30.0	4.4	418.8	29.3	2.7	48.6	26.0	74.8	38.7	10.4	
Queue Length 50th (ft)	~182	248	0	~131	156	0	109	77	77	115	15	
Queue Length 95th (ft)	#308	367	57	#269	237	20	#204	115	#199	187	76	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	472	1407	856	92	1142	622	515	1185	177	536	612	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.16	0.74	0.44	1.77	0.59	0.19	0.80	0.30	0.82	0.44	0.42	
Intersection Summary												

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٨	→	\mathbf{r}	4	+	×	•	Ť	1	*	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	<u>††</u>	1	۲	<u>††</u>	1	ሻሻ	∱ ₽		۲	↑	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	290		210	200		450	200		0	185		0
Storage Lanes	2		0	1		1	2		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850					0.987				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	3539	1583	1770	3539	1863	3433	3493	0	1770	1863	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	3433	3539	1583	1770	3539	1863	3433	3493	0	1770	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			289					12				228
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		437			631			452			543	
Travel Time (s)		6.0			8.6			10.3			12.3	
Intersection Summary												

Area Type:

Other

El Dorado Hills Memory Care Center 2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	٦	-	\rightarrow	1	-	•	1	Ť	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		٦	†		۲	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.962			0.884			0.996				0.850
Flt Protected		0.969			0.994		0.950			0.950		
Satd. Flow (prot)	0	1736	0	0	1637	0	1770	1855	0	1770	1863	1583
Flt Permitted		0.969			0.994		0.950			0.950		
Satd. Flow (perm)	0	1736	0	0	1637	0	1770	1855	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٦	-	\mathbf{F}	4	-	•	•	t	۲	\	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب ا	1		\$		ľ	4Î		ľ	4Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850		0.947			0.996			0.945	
Flt Protected		0.984			0.998		0.950			0.950		
Satd. Flow (prot)	0	1833	1583	0	1760	0	1770	1855	0	1770	1760	0
Flt Permitted		0.984			0.998		0.950			0.950		
Satd. Flow (perm)	0	1833	1583	0	1760	0	1770	1855	0	1770	1760	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		1943			982			1162			698	
Travel Time (s)		44.2			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

		\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>††</u>	1		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected						
Satd. Flow (prot)	3539	1863	0	3539	0	1863
Flt Permitted						
Satd. Flow (perm)	3539	1863	0	3539	0	1863
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	۶	+	←	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ب ا	4Î		۲	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected						
Satd. Flow (prot)	0	1863	1863	0	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1863	1863	0	1863	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Appendix F:

Analysis Worksheets for Near-Term (2025) plus Proposed Project Conditions

	₫	۶	→	\mathbf{r}	F	∢	-	•	•	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ሻሻ	∱ î⊱		۲
Volume (veh/h)	2	192	267	217	15	46	974	123	281	161	6	141
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1863		1872	1863	1863	1863	1863	1900	1863
Adj Flow Rate, veh/h		209	290	236		50	1059	134	305	175	7	153
Adj No. of Lanes		2	2	1		1	2	1	2	2	0	1
Peak Hour Factor		0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		197	1206	540		64	1130	506	386	1075	43	187
Arrive On Green		0.06	0.34	0.34		0.04	0.32	0.32	0.11	0.31	0.31	0.11
Sat Flow, veh/h		3442	3539	1583		1783	3539	1583	3442	3470	138	1774
Grp Volume(v), veh/h		209	290	236		50	1059	134	305	89	93	153
Grp Sat Flow(s), veh/h/ln		1721	1770	1583		1783	1770	1583	1721	1770	1838	1774
Q Serve(\underline{q}_s), s		5.0	5.1	10.1		2.4	25.4	5.5	7.5	3.2	3.2	7.4
Cycle Q Clear(g_c), s		5.0	5.1	10.1		2.4	25.4	5.5	7.5	3.2	3.2	7.4
Prop In Lane		1.00	0.1	1.00		1.00	20.1	1.00	1.00	0.2	0.08	1.00
Lane Grp Cap(c), veh/h		197	1206	540		64	1130	506	386	549	570	187
V/C Ratio(X)		1.06	0.24	0.44		0.79	0.94	0.27	0.79	0.16	0.16	0.82
Avail Cap(c_a), veh/h		197	1206	540		102	1146	512	472	557	578	223
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		41.2	20.7	22.3		41.8	28.9	22.1	37.8	21.9	21.9	38.3
Incr Delay (d2), s/veh		81.4	0.1	0.6		18.8	14.0	0.3	7.2	0.1	0.1	18.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		4.6	2.5	4.5		1.5	14.6	2.4	4.0	1.6	1.7	4.5
LnGrp Delay(d),s/veh		122.6	20.8	22.9		60.6	42.9	22.4	45.0	22.1	22.1	56.3
LnGrp LOS		F	20.0 C	С		E	۹ <u>۲</u> .,	C	43.0 D	C	C	50.5 E
Approach Vol, veh/h			735	0		L	1243	0	U	487	0	
Approach Delay, s/veh			50.4				41.4			36.4		
Approach LOS			50.4 D				41.4 D			50.4 D		
	1	2		4	-	1		0		D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	35.5	13.8	31.0	9.0	33.6	13.2	31.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	28.3	12.0	26.5	5.0	28.3	11.0	27.5				
Max Q Clear Time (g_c+I1) , s	4.4	12.1	9.5	27.0	7.0	27.4	9.4	5.2				
Green Ext Time (p_c), s	0.0	8.8	0.3	0.0	0.0	0.5	0.1	4.8				
Intersection Summary												
HCM 2010 Ctrl Delay			44.7									
HCM 2010 LOS			D									
Notes												

User approved ignoring U-Turning movement.

	Ļ	~
Movement	SBT	SBR
Lane Configurations	1	1
Volume (veh/h)	274	424
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	298	461
Adj No. of Lanes	1	1
Peak Hour Factor	0.92	0.92
Percent Heavy Veh, %	2	2
Cap, veh/h	565	480
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1863	1583
Grp Volume(v), veh/h	298	461
Grp Sat Flow(s),veh/h/ln	1863	1583
Q Serve(g_s), s	11.6	25.0
Cycle Q Clear(g_c), s	11.6	25.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	565	480
V/C Ratio(X)	0.53	0.96
Avail Cap(c_a), veh/h	565	480
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	25.3	30.0
Incr Delay (d2), s/veh	0.9	31.1
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	6.1	15.0
LnGrp Delay(d),s/veh	26.2	61.1
LnGrp LOS	С	E
Approach Vol, veh/h	912	
Approach Delay, s/veh	48.9	
Approach LOS	D	
Timer		

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	24	0	1	0	0	54	3	370	12	38	484	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	50	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	0	1	0	0	59	3	402	13	41	526	16

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1054	1031	526	1024	1024	409	526	0	0	415	0	0
Stage 1	609	609	-	415	415	-	-	-	-	-	-	-
Stage 2	445	422	-	609	609	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	204	233	552	214	235	642	1041	-	-	1144	-	-
Stage 1	482	485	-	615	592	-	-	-	-	-	-	-
Stage 2	592	588	-	482	485	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	180	224	552	207	226	642	1041	-	-	1144	-	-
Mov Cap-2 Maneuver	180	224	-	207	226	-	-	-	-	-	-	-
Stage 1	481	468	-	613	590	-	-	-	-	-	-	-
Stage 2	536	586	-	464	468	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	27.8	11.2	0.1	0.6
HCM LOS	D	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1041	-	-	185	642	1144	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.147	0.091	0.036	-	-	
HCM Control Delay (s)	8.5	-	-	27.8	11.2	8.3	-	-	
HCM Lane LOS	А	-	-	D	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.5	0.3	0.1	-	-	

Intersection												
Intersection Delay, s/veh	40											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	2	28	455	0	80	60	61	0	319	117	62
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	2	30	495	0	87	65	66	0	347	127	67
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		65.7				22.9				34.6		
HCM LOS		F				С				D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				
Vol Left, %		100%	0%	7%	0%	40%	100%	0%				
Vol Thru, %		0%	65%	93%	0%	30%	0%	97%				
Vol Right, %		0%	35%	0%	100%	30%	0%	3%				
Sign Control		Stop										
Traffic Vol by Lane		319	179	30	455	201	102	228				
LT Vol		319	0	2	0	80	102	0				

5								
Traffic Vol by Lane	319	179	30	455	201	102	228	
LT Vol	319	0	2	0	80	102	0	
Through Vol	0	117	28	0	60	0	222	
RT Vol	0	62	0	455	61	0	6	
Lane Flow Rate	347	195	33	495	218	111	248	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	0.847	0.435	0.076	1	0.553	0.282	0.595	
Departure Headway (Hd)	8.793	8.051	8.402	7.644	9.114	9.161	8.643	
Convergence, Y/N	Yes							
Сар	413	448	426	475	398	392	419	
Service Time	6.53	5.788	6.157	5.399	7.154	6.903	6.384	
HCM Lane V/C Ratio	0.84	0.435	0.077	1.042	0.548	0.283	0.592	
HCM Control Delay	44.6	16.9	11.9	69.3	22.9	15.5	23.4	
HCM Lane LOS	E	С	В	F	С	С	С	
HCM 95th-tile Q	8.1	2.2	0.2	13.2	3.2	1.1	3.7	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	102	222	6
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	111	241	7
Number of Lanes	0	1	1	0
	0	•	•	U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		21		
3				
HCM LOS		С		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	677	2	0	1681	0	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	736	2	0	1827	0	1	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	736	0	1650	368	
Stage 1	-	-	-	-	736	-	
Stage 2	-	-	-	-	914	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	865	-	90	629	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	351	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	865	-	90	629	
Mov Cap-2 Maneuver	-	-	-	-	90	-	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	351	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	10.7	
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	629	-	-	865	-	
HCM Lane V/C Ratio	0.002	-	-	-	-	
HCM Control Delay (s)	10.7	-	-	0	-	
HCM Lane LOS	В	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	23	14	4	2	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	25	15	4	2	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	20	0	-	0	42	17	
Stage 1	-	-	-	-	17	-	
Stage 2	-	-	-	-	25	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1596	-	-	-	969	1062	
Stage 1	-	-	-	-	1006	-	
Stage 2	-	-	-	-	998	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1596	-	-	-	969	1062	
Mov Cap-2 Maneuver	-	-	-	-	969	-	
Stage 1	-	-	-	-	1006	-	
Stage 2	-	-	-	-	998	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.7	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1596	-	-	- 969
HCM Lane V/C Ratio	-	-	-	- 0.002
HCM Control Delay (s)	0	-	-	- 8.7
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\rightarrow	4	-	×	1	1	1	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	211	290	236	66	1059	134	305	182	153	298	461	
v/c Ratio	1.24	0.23	0.33	0.60	0.92	0.22	0.68	0.19	0.71	0.60	0.88	
Control Delay	184.8	22.2	4.7	64.9	42.4	5.3	44.4	23.1	56.6	32.7	40.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	184.8	22.2	4.7	64.9	42.4	5.3	44.4	23.1	56.6	32.7	40.6	
Queue Length 50th (ft)	~80	64	0	38	307	0	86	38	85	142	175	
Queue Length 95th (ft)	#151	97	50	#100	#441	39	129	64	#174	223	#341	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	170	1243	709	110	1184	618	487	1147	230	583	589	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	0.23	0.33	0.60	0.89	0.22	0.63	0.16	0.67	0.51	0.78	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\rightarrow	F	4	←	•	1	1	1	1	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ኘኘ	<u>††</u>	1		٦	<u>††</u>	1	ሻሻ	≜ ¶≽		۲	1
Volume (veh/h)	503	966	347	65	87	618	111	381	292	31	134	217
Number	5	2	12		1	6	16	3	8	18	7	4
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863		1878	1863	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	547	1050	377		95	672	121	414	317	34	146	236
Adj No. of Lanes	2	2	1		1	2	1	2	2	0	1	1
Peak Hour Factor	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2		2	2	2	2	2	2	2	2
Cap, veh/h	459	1295	579		108	1037	464	490	826	88	172	392
Arrive On Green	0.13	0.37	0.37		0.06	0.29	0.29	0.14	0.26	0.26	0.10	0.21
Sat Flow, veh/h	3442	3539	1583		1789	3539	1583	3442	3228	344	1774	1863
Grp Volume(v), veh/h	547	1050	377		95	672	121	414	173	178	146	236
Grp Sat Flow(s), veh/h/ln	1721	1770	1583		1789	1770	1583	1721	1770	1802	1774	1863
Q Serve(g_s), s	11.0	22.1	16.3		4.3	13.7	4.8	9.7	6.6	6.7	6.7	9.4
Cycle Q Clear(q_c), s	11.0	22.1	16.3		4.3	13.7	4.8	9.7	6.6	6.7	6.7	9.4 9.4
Prop In Lane	1.00	ZZ. I	1.00		4.3 1.00	13.7	4.0 1.00	9.7 1.00	0.0	0.7	1.00	9.4
		100E	579			1037		490	150	461		202
Lane Grp Cap(c), veh/h	459	1295			108		464		453		172	392
V/C Ratio(X)	1.19	0.81	0.65		0.88	0.65	0.26	0.85	0.38	0.39	0.85	0.60
Avail Cap(c_a), veh/h	459	1365	611		108	1107	495	501	579	590	172	519
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.7	23.6	21.8		38.4	25.4	22.3	34.5	25.3	25.3	36.6	29.4
Incr Delay (d2), s/veh	106.0	3.7	2.3		49.8	1.2	0.3	12.4	0.5	0.5	30.8	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	11.9	11.4	7.5		3.6	6.8	2.1	5.4	3.3	3.4	4.8	5.0
LnGrp Delay(d),s/veh	141.8	27.2	24.1		88.3	26.7	22.6	46.9	25.8	25.9	67.4	30.9
LnGrp LOS	F	С	С		F	С	С	D	С	С	E	С
Approach Vol, veh/h		1974				888			765			636
Approach Delay, s/veh		58.4				32.7			37.3			41.4
Approach LOS		E				С			D			D
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.0	35.9	15.7	21.9	15.0	29.9	12.0	25.6				
Change Period (Y+Rc), s	4.0	5.7	4.0	4.5	4.0	5.7	4.0	4.5				
Max Green Setting (Gmax), s	5.0	31.8	12.0	23.0	11.0	25.8	8.0	27.0				
Max Q Clear Time (q_c+11) , s	6.3	24.1	11.7	14.4	13.0	15.7	8.7	8.7				
Green Ext Time (p_c), s	0.0	6.1	0.1	2.9	0.0	7.7	0.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			46.7									
HCM 2010 LOS			-10.7 D									

User approved ignoring U-Turning movement.

	~
Movement	SBR
Land Configurations	1
Volume (veh/h)	234
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	254
Adj No. of Lanes	1
Peak Hour Factor	0.92
Percent Heavy Veh, %	2
Cap, veh/h	333
Arrive On Green	0.21
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	254
Grp Sat Flow(s),veh/h/ln	1583
Q Serve(g_s), s	12.4
Cycle Q Clear(g_c), s	12.4
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	333
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	442
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	30.6
Incr Delay (d2), s/veh	5.5
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	5.9
LnGrp Delay(d),s/veh	36.1
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

Timer

2.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Vol, veh/h	18	2	11	18	1	91	6	588	15	7	57	567	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	-	50	-	110
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	2	2	2
Mvmt Flow	20	2	12	20	1	99	7	639	16	8	62	616	22

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	1450	1423	616	1407	1415	655	616	0	0	754	655	0	0
Stage 1	740	755	-	660	660	-	-	-	-	-	-	-	-
Stage 2	710	668	-	747	755	-	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	136	491	117	137	466	964	-	-	-	932	-	-
Stage 1	409	417	-	452	460	-	-	-	-	-	-	-	-
Stage 2	424	456	-	405	417	-	-	-	-	-	-	-	-
Platoon blocked, %								-	-			-	-
Mov Cap-1 Maneuver	85	135	491	112	136	466	964	-	-	~ -9	~ -9	-	-
Mov Cap-2 Maneuver	85	135	-	112	136	-	-	-	-	-	-	-	-
Stage 1	406	417	-	449	457	-	-	-	-	-	-	-	-
Stage 2	331	453	-	393	417	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	44.1	24.4	0.1		
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	NBLn1	SBL	SBT	SBR	
Capacity (veh/h)	964	-	-	125	303	+	-	-	
HCM Lane V/C Ratio	0.007	-	-	0.27	0.395	-	-	-	
HCM Control Delay (s)	8.8	-	-	44.1	24.4	-	-	-	
HCM Lane LOS	А	-	-	E	С	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	1	1.8	-	-	-	
Notes									
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s	+: Com	outation	Not De	efined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	46.6											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	38	76	482	0	4	59	40	0	501	188	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2	0	2	2	2	0	2	2	2
Mvmt Flow	0	41	83	524	0	4	64	43	0	545	204	5
Number of Lanes	0	0	1	1	0	0	1	0	0	1	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				1		
HCM Control Delay		50.7				14.2				55.5		
HCM LOS		F				В				F		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2				

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	33%	0%	4%	100%	0%	
Vol Thru, %	0%	97%	67%	0%	57%	0%	64%	
Vol Right, %	0%	3%	0%	100%	39%	0%	36%	
Sign Control	Stop							
Traffic Vol by Lane	501	193	114	482	103	27	136	
LT Vol	501	0	38	0	4	27	0	
Through Vol	0	188	76	0	59	0	87	
RT Vol	0	5	0	482	40	0	49	
Lane Flow Rate	545	210	124	524	112	29	148	
Geometry Grp	7	7	7	7	6	7	7	
Degree of Util (X)	1	0.431	0.261	0.979	0.257	0.072	0.33	
Departure Headway (Hd)	7.936	7.404	7.592	6.728	8.268	8.78	8.025	
Convergence, Y/N	Yes							
Сар	457	485	473	540	433	407	446	
Service Time	5.712	5.179	5.339	4.475	6.337	6.548	5.793	
HCM Lane V/C Ratio	1.193	0.433	0.262	0.97	0.259	0.071	0.332	
HCM Control Delay	70.8	15.7	13	59.6	14.2	12.2	14.7	
HCM Lane LOS	F	С	В	F	В	В	В	
HCM 95th-tile Q	13	2.1	1	13.3	1	0.2	1.4	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	27	87	49
Peak Hour Factor	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	2	2	2
Mvmt Flow	0	29	95	53
Number of Lanes	0	1	1	0
	Ū		•	Ū
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		14.3		
HCM LOS		14.3 B		
		В		

Lane

0

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	1814	2	0	1233	0	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	-	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1972	2	0	1340	0	2	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1972	0	2642	986	
Stage 1	-	-	-	-	1972	-	
Stage 2	-	-	-	-	670	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	290	-	19	247	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	470	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	290	-	19	247	
Mov Cap-2 Maneuver	-	-	-	-	19	-	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	470	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	19.7	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	247	-	-	290	-	
HCM Lane V/C Ratio	0.009	-	-	-	-	
HCM Control Delay (s)	19.7	-	-	0	-	
HCM Lane LOS	С	-	-	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	-	

0.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	0	25	23	4	6	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	27	25	4	7	0	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	29	0	-	0	54	27	
Stage 1	-	-	-	-	27	-	
Stage 2	-	-	-	-	27	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1584	-	-	-	954	1048	
Stage 1	-	-	-	-	996	-	
Stage 2	-	-	-	-	996	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1584	-	-	-	954	1048	
Mov Cap-2 Maneuver	-	-	-	-	954	-	
Stage 1	-	-	-	-	996	-	
Stage 2	-	-	-	-	996	-	

Approach	EB	WB	SB	
HCM Control Delay, s	0	0	8.8	
HCM LOS			А	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1584	-	-	- 954
HCM Lane V/C Ratio	-	-	-	- 0.007
HCM Control Delay (s)	0	-	-	- 8.8
HCM Lane LOS	А	-	-	- A
HCM 95th %tile Q(veh)	0	-	-	- 0

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	٦	-	\mathbf{r}	∢	←	•	1	Ť	1	Ļ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	547	1050	377	166	672	121	414	351	146	236	254	
v/c Ratio	1.16	0.82	0.46	1.82	0.66	0.21	0.81	0.40	0.82	0.64	0.52	
Control Delay	128.3	30.1	4.4	434.1	29.3	2.7	48.9	26.0	74.8	38.7	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	128.3	30.1	4.4	434.1	29.3	2.7	48.9	26.0	74.8	38.7	10.4	
Queue Length 50th (ft)	~182	249	0	~135	156	0	110	77	77	115	15	
Queue Length 95th (ft)	#308	368	57	#274	237	20	#205	115	#199	187	76	
Internal Link Dist (ft)		357			551			372		463		
Turn Bay Length (ft)	290		210	200		450	200		185			
Base Capacity (vph)	471	1406	856	91	1140	621	514	1184	177	535	611	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.16	0.75	0.44	1.82	0.59	0.19	0.81	0.30	0.82	0.44	0.42	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

El Dorado Hills Memory Care Center 1: Francisco Dr. & Green Valley Rd.

	⊴	۶	-	\mathbf{r}	F	∢	←	•	•	†	1	\
Lane Group	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ሻሻ	<u>††</u>	1		۲	<u>††</u>	1	ካካ	t₽		٦
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)			0%				0%			0%		
Storage Length (ft)		290		210		200		450	200		0	185
Storage Lanes		2		0		1		1	2		0	1
Taper Length (ft)		25				25			25			25
Lane Util. Factor	0.95	0.97	0.95	1.00	0.95	1.00	0.95	1.00	0.97	0.95	0.95	1.00
Ped Bike Factor												
Frt				0.850				0.850		0.994		
Flt Protected		0.950				0.950			0.950			0.950
Satd. Flow (prot)	0	3434	3539	1583	0	1778	3539	1583	3433	3518	0	1770
Flt Permitted		0.800							0.950			0.950
Satd. Flow (perm)	0	2892	3539	1583	0	1872	3539	1583	3433	3518	0	1770
Right Turn on Red				Yes				Yes			Yes	
Satd. Flow (RTOR)				236				134		5		
Link Speed (mph)			50				50			30		
Link Distance (ft)			437				631			452		
Travel Time (s)			6.0				8.6			10.3		
Intersection Summary												

Area Type:

Other

	Ļ	~
Lane Group	SBT	SBR
Lane Configurations	•	1
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	12	12
Grade (%)	0%	
Storage Length (ft)		0
Storage Lanes		1
Taper Length (ft)		
Lane Util. Factor	1.00	1.00
Ped Bike Factor		
Frt		0.850
Flt Protected		
Satd. Flow (prot)	1863	1583
Flt Permitted		
Satd. Flow (perm)	1863	1583
Right Turn on Red		Yes
Satd. Flow (RTOR)		137
Link Speed (mph)	30	
Link Distance (ft)	543	
Travel Time (s)	12.3	
Intersection Summary		

El Dorado Hills Memory Care Center

2: Francisco Dr. & Cambria Way/Embarcadero Dr.

	٦	-	\mathbf{r}	∢	←	•	•	Ť	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >			4 >		٦	↑		ሻ	†	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	50		0	50		110
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.995			0.865			0.995				0.850
Flt Protected		0.954					0.950			0.950		
Satd. Flow (prot)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Flt Permitted		0.954					0.950			0.950		
Satd. Flow (perm)	0	1768	0	0	1611	0	1770	1853	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		265			721			452			452	
Travel Time (s)		6.0			16.4			10.3			10.3	

Intersection Summary

Area Type:

Other

El Dorado Hills Memory Care Center 3: El Dorado Hills Blvd. & Francisco Dr.

	٦	-	\mathbf{r}	∢	-	•	•	Ť	1	>	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		با	1		\$		ľ	4Î		ľ	¢Î	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		0	100		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850		0.959			0.948			0.996	
Flt Protected		0.997			0.980		0.950			0.950		
Satd. Flow (prot)	0	1857	1583	0	1751	0	1770	1766	0	1770	1855	0
Flt Permitted		0.997			0.980		0.950			0.950		
Satd. Flow (perm)	0	1857	1583	0	1751	0	1770	1766	0	1770	1855	0
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		2033			982			1162			698	
Travel Time (s)		46.2			22.3			17.6			10.6	

Intersection Summary

Area Type:

Other
El Dorado Hills Memory Care Center 4: Site Dwy & Green Valley Rd.

	-+	\mathbf{r}	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	††	۴		<u>††</u>		1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)	0%			0%	0%	
Storage Length (ft)		100	0		0	0
Storage Lanes		1	0		0	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Ped Bike Factor						
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3539	1583	0	3539	0	1611
Flt Permitted						
Satd. Flow (perm)	3539	1583	0	3539	0	1611
Link Speed (mph)	50			50	30	
Link Distance (ft)	1235			437	300	
Travel Time (s)	16.8			6.0	6.8	
Intersection Summary						

Area Type:

Other

El Dorado Hills Memory Care Center 5: Cambria Way & Site Dwy

	٦	-	-	•	×	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		با	4î		. Y	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (%)		0%	0%		0%	
Storage Length (ft)	0			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.972			
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1811	0	1770	0
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1811	0	1770	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		228	265		183	
Travel Time (s)		5.2	6.0		4.2	
Intersection Summary						

Area Type:

Other

Kimley-Horn Lanes and Geometrics Synchro 9 Report Page 5

Appendix G:

Traffic Signal Warrant Worksheets

Default Scenario Thu Jun 4, 2015 15:35:55 Page 1-1

Scenario:	Default	Scenario Report Scenario
Command:	Default	Command
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Default Scenario	Thu Jun 4, 2015 15:35:55	Page 2-1
	Signal Warrant Summary Report	
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Intersection 2 # 3 Intersection 3</pre>	No / No Yes	??? / ??? ??? / ???

Default Scenario Thu Jun 4, 2015 15:35:55 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 1
 0
 1
 0
 0
 0
 0
 0
 1
 Initial Vol:1420143754010190000ApproachDel:xxxxxxxxxxxx27.511.2 53 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.1] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=19] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1094] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=53] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1094] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants). The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond

the scope of this software, may yield different results.

Thu Jun 4, 2015 15:35:55 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 1
 0
 1
 0
 0
 0
 0
 1

 Initial Vol:
 1
 420
 14
 37
 540
 10
 19
 0
 0
 0
 53

 Major Street Volume: 1022 Minor Approach Volume: 53 Minor Approach Volume: Minor Approach Volume Threshold: 277 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario	Thu Jun 4, 2015 15:35:55	Page 3-3
	olume Signal Warrant Report [Urban]	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *
<pre>Intersection #3 Intersectior ************************************</pre>	1 3 ************************************	* * * * * * * * * * * *
Base Volume Alternative: Pea	ak Hour Warrant Met -	
•	South Bound East Bound W	
	L - T - R L - T - R L	
	•	
Control: Stop Sign	Stop Sign Stop Sign S	top Sign
Lanes: 1 0 0 1 0	1 0 0 1 0 0 0 1! 0 0 0	0 1! 0 0
	0 108 236 4 2 29 509 71	
	•	
Major Street Volume:	887	
Minor Approach Volume:	540	
Minor Approach Volume Thresh	nold: 326	

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default ScenarioThu Jun 4, 2015 15:39:59Page 1-1

	Scenario Report	
Scenario:	Default Scenario	
Command:	Default Command	
Volume:	Default Volume	
Geometry:	Default Geometry	
Impact Fee:	Default Impact Fee	
Trip Generation:	Default Trip Generation	
Trip Distribution:	Default Trip Distribution	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Default Scenario	Thu Jun 4, 2015 15:39:59	Page 2-1
	Signal Warrant Summary Report	
Intersection	Base Met [Del / Vol]	Future Met [Del / Vol]
<pre># 2 Intersection 2 # 3 Intersection 3</pre>	No / No Yes	??? / ??? ???

Default Scenario Thu Jun 4, 2015 15:39:59 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 < Initial Vol:2 5011654 52016122520186ApproachDel:xxxxxxxxxxxx35.721.5 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=19] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1235] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.6] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=107] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1235] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:39:59 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Intersection 2 Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 0
 0
 1
 0
 1
 0
 0
 1
 0

 Initial Vol:
 2
 501
 16
 54
 520
 16
 12
 2
 5
 20
 1
 86

 Major Street Volume: 1109 Minor Approach Volume: 107 Minor Approach Volume: Minor Approach Volume Threshold: 249 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario	Thu Jun 4, 2015 15:39:59	Page 3-3
	olume Signal Warrant Report [Urban]	
* * * * * * * * * * * * * * * * * * * *	***************************************	*****
<pre>Intersection #3 Intersectio ************************************</pre>	n 3 ************************************	* * * * * * * * * * * *
Base Volume Alternative: Pe	ak Hour Warrant Met -	
•	South Bound East Bound We	
	L - T - R L - T - R L - -	
Control: Stop Sign	Stop Sign Stop Sign St	top Sign '
	1 0 0 1 0 0 0 1! 0 0 0 0	
	7 27 154 3 2 48 495 27	
Major Street Volume:	957	i
Minor Approach Volume:	545	
Minor Approach Volume Thres	hold: 300	

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

	Scenario Report	
Scenario:	Default Scenario	
Command:	Default Command	
Volume:	Default Volume	
Geometry:	Default Geometry	
Impact Fee:	Default Impact Fee	
Trip Generation:	Default Trip Generation	
Trip Distribution:	Default Trip Distribution	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Default Scenario Thu Jun 4,		5 15:44:01	Page 2-1
	Signal Warrant S	ummary Report	
Intersection	1	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Francis	sco Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Francis	sco Drive @ El Dorado Hills B	Yes	555
# 4 Green V	<i>V</i> alley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambria	a Way @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Initial Vol:3 4201437 540122001053ApproachDel:xxxxxxxxxxxx35.711.7 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=21] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1100] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=53] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1100] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:44:01 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1

 Initial Vol:
 3 420 14
 37 540 12
 20 0 1
 0 0 53

 Major Street Volume:1026Minor Approach Volume:53 Minor Approach Volume: Minor Approach Volume Threshold: 276 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 366 125
 50
 108 236
 4
 2 29
 510
 71
 67
 63

 Major Street Volume:889Minor Approach Volume:541 Minor Approach Volume Threshold: 325 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 1
 0
 0
 0
 1488
 0
 0
 1488
 0

 ApproachDel:
 16.0
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=1] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2977] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 2976 Minor Approach Volume: 1 Minor Approach Volume Threshold: -91 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 4 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=36] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:44:01 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 19
 0
 11
 4

 Major Street Volume:34Minor Approach Volume:2 Minor Approach Volume Threshold: 1121 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

_____ Scenario Report

Scenario:	Default	Scenario Report Scenario
Command: Volume: Geometry: Impact Fee: Trip Generation: Trip Distribution: Paths: Routes: Configuration:	Default Default Default Default Default Default Default	Geometry Impact Fee Trip Generation Trip Distribution Path

Default	t Scenario Thu Jun 4, 201	5 15:47:01	Page 2-1			
Signal Warrant Summary Report						
Intersection		Base Met	Future Met			
		[Del / Vol]	[Del / Vol]			
# 2 Fi	rancisco Drive @ Cambria Way	No / No	<u>;;; / ;;;</u>			
# 3 Fi	rancisco Drive @ El Dorado Hills B	Yes	÷.5			
# 4 Gi	reen Valley Road @ Project Access	No / No	;;; / ;;;			
# 5 Ca	ambria Way @ Project Access Drivew	No / No	<pre>5.5. \ 5.5.</pre>			

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 1
 0
 < Initial Vol:4 5011654 52018152820186ApproachDel:xxxxxxxxxxxx36.321.8 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.6] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=107] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1245] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:47:01 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R 1113 107 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 248 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control:Stop SignStop SignStop SignStop SignLanes:10101001!00Initial Vol:48125737271543248498273735 Major Street Volume:959Minor Approach Volume:548 Minor Approach Volume Threshold: 299 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 0
 2
 0
 0
 0
 1569
 2
 0
 1028
 0

 ApproachDel:
 16.8
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16.8
 16. _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2601] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 2599 Minor Approach Volume: 2 Minor Approach Volume Threshold: -44 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:47:01 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 19
 0
 19
 4

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx
 xxxxxx

 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=6] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=48] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:47:01 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 19
 0
 19
 4

 Major Street Volume:42Minor Approach Volume:6 Minor Approach Volume Threshold: 1065 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

		Scenario Report			
Scenario:	Default	Scenario			
Command:	Default	Command			
Volume:	Default	Volume			
Geometry:	Default	Geometry			
Impact Fee:	Default	Impact Fee			
Trip Generation:	Default	Trip Generation			
Trip Distribution:	Default	Trip Distribution			
Paths:	Default	Path			
Routes:	Default	Route			
Configuration:	Default	Configuration			

Default Scenario	Thu Jun 4, 201	5 15:49:53	Page 2-1			
Signal Warrant Summary Report						
Intersection		Base Met	Future Met			
		[Del / Vol]	[Del / Vol]			
# 2 Francisco D	rive @ Cambria Way	No / No	;;; / ;;;			
# 3 Francisco Di	rive @ El Dorado Hills B	Yes	÷;;			
# 4 Green Valley	7 Road @ Project Access	No / No	??? / ???			
# 5 Cambria Way	@ Project Access Drivew	No / No	;;; / ;;;			

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 1
 Initial Vol:137012384841323000ApproachDel:xxxxxxxxxxxx27.711.1 54 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=23] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=995] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=54] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=995] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants). The peak hour warrant analysis in this report is not intended to replace

a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:49:53 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1

 Initial Vol:
 1 370 12 38 484 13 23 0 0 0 54

 Major Street Volume: 918 Minor Approach Volume: 54 Minor Approach Volume: Minor Approach Volume Threshold: 314 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 317 117
 62
 102 222
 6
 2 28 454
 80 60
 61

 Major Street Volume:826Minor Approach Volume:484 Minor Approach Volume Threshold: 351 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.
Default Scena	ario	Thu J	un 4	, 2015	15:4	19:53			Page	3-4
Peak Hour Delay Signal Warrant Report ************************************										
Intersection #4 Green Valley Road @ Project Access Driveway										
Base Volume Alternative: Peak Hour Warrant NOT Met										
Approach:	North Bou	 Ind	South	n Boun	 .d	Eas	st Boun	 d	West Bo	und
Movement:	L – T -	R I	, – 	T –	R 	L –	T –	R I 	L – Т 	- R
Control:	Stop Sig	n i	Stop	o Sign		Unco	ontroll	ed	Uncontro	lled
Lanes:	0 0 0 0	1 (0	0 0	0	0 0	2 0	1 (02	0 0
Initial Vol:	0 0	0	0	0	0	0	677	0	0 1680	0
ApproachDel:	XXXXXX		XXXX	xxx		XXX	xxxx		xxxxxx	

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: 2357 Minor Approach Volume: 0 Minor Approach Volume Threshold: -11 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario 		Thu	Jun	4, 3	2015	15:4	9:53					P	age	- 3 -	6
Peak Hour Delay Signal Warrant Report																
* * * * * * * * * * * * * * * *	***************************************															
Intersection	Intersection #5 Cambria Way @ Project Access Driveway															
* * * * * * * * * * * * *	******	*****	*****	****	* * * :	* * * *	* * * * *	*****	* * * *	* * *	* * * *	* * * *	***	* * *	* * *	* * * *
Base Volume Alternative: Peak Hour Warrant NOT Met																
			-													
Approach:	North	Bound	f	Sou	th 1	Bound	d	Ea	st B	oun	d		Wes	t Bo	oun	d
	North L -															
	L -	т –	R	L -	Т	-	R	L -	Т							
Movement:	L –	Т –	R -	L -	Т 		R 	L -	T 		R 	L 	-			R
Movement:	L –	T - Sign	R -	L - St	т 	- Sign	R 	L –	T ontr	- oll	R ed	L U	- Jnco	Т 	- 	R
Movement: Control:	L – Stop	T - Sign 0 0	R -	L - St	T op 1	- Sign	R 	L - Unc	T ontr 1	 oll 0	R ed	L U 0	- Jnco	T ntro 1	- 	R ed
Movement: Control: Lanes:	L - Stop 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	T op 1	 Sign ! 0 0	R 0	L - Unc 0 0 0	T ontr 1	- oll 0	R ed 0	L U 0	- Jnco 0	T ntro 1 14	- 	R ed 0
Movement: Control: Lanes: Initial Vol:	L - Stop 0 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	T 0p 1	 Sign ! 0 0	R 0	L - Unc 0 0 0	T ontr 1 23	- oll 0	R ed 0	L U 0	- Jnco 0	T ntro 1 14	- 	R ed 0

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:49:53 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 1
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 0
 0
 0
 14
 0

 Major Street Volume:37Minor Approach Volume:0 Minor Approach Volume Threshold: 1099 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 1-1

		Scenario Report
Scenario:	Default	Scenario
Command:	Default	Command
Volume:	Default	Volume
Geometry:	Default	Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default	Trip Generation
Trip Distribution:	Default	Trip Distribution
Paths:	Default	Path
Routes:	Default	Route
Configuration:	Default	Configuration

Default Scenar	io Thu Jun 4, 201	5 15:54:09	Page 2-1
	Signal Warrant S	ummary Report	
Intersection		Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Francisco	Drive @ Cambria Way	No / No	<u>;;; / ;;;</u>
# 3 Francisco	Drive @ El Dorado Hills B	Yes	555
# 4 Green Val	ley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambria W	ay @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 0 0 0 0 0
 Initial Vol:4 5881557 56718152818191ApproachDel:xxxxxxxxxxxx44.924.8 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1384] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.8] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=110] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1384] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:54:09 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1!
 0

 Initial Vol:
 4
 588
 15
 57
 567
 18
 15
 2
 8
 18
 1
 91

 1249 110 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 208 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control:Stop SignStop SignStop SignStop SignLanes:10101001!0001!0Initial Vol:4991885278749387647945940 Major Street Volume: 855 Minor Approach Volume: 593 Minor Approach Volume: Minor Approach Volume Threshold: 339 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario	Thu Ju	un 4,	2015	15:5	54:09		Page 3-	4
Peak Hour Delay Signal Warrant Report									

Intersection	#4 Green Val	lley Road	d @ P	rojec	t Acc	cess Drivev	vay		
* * * * * * * * * * * * *	*********	*******	* * * * *	*****	****	*********	- *******	*********	* * * *
Base Volume A	Base Volume Alternative: Peak Hour Warrant NOT Met								
	base votude Alternative. Fear hour warrant Nor Met								
Approach:	North Bour	nd s	South	1 Boun	d	East Bo	ound	West Bour	ıd
Approach: Movement:	North Bour L - T -							West Bour	id R
									nd R
		R L	-		R 		- R -		R
Movement:	L - T - Stop Sign	R L 	- Stop	T - Sign	R 	L – T 	- R - plled	L – T –	R
Movement: Control:	L - T - Stop Sign	R L 	- Stop	T - Sign	R 	L - T Uncontro	- R - olled 0 1	L - T - Uncontroll	R
Movement: Control: Lanes:	L - T - Stop Sign 0 0 0 0	R L 1 0	- Stop 0	T - Sign 0 0 0	R 0	L - T Uncontro 0 0 2	- R - olled 0 1	L - T - Uncontroll 0 0 2 0	R
Movement: Control: Lanes: Initial Vol:	L - T - Stop Sign 0 0 0 0 0 0	R L 1 0	- Stop 0 0	T - Sign 0 0 0	R 0	L - T Uncontro 0 0 2 0 1814	- R - olled 0 1	L - T - Uncontroll 0 0 2 0 0 1230	R

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume:3044Minor Approach Volume:0 Minor Approach Volume Threshold: -99 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scena	ario 		Thu	Jun	4,	2015	15:5	54:09					P	age	3-	6
Peak Hour Delay Signal Warrant Report																

Intersection	Intersection #5 Cambria Way @ Project Access Driveway															
***********	* * * * * * * *	*****	*****	* * * * *	***	* * * *	* * * * *	*****	* * * *	* * *	* * * *	* * * *	* * *	* * * :	* * *	* * * *
Base Volume Alternative: Peak Hour Warrant NOT Met																
			-													
Approach:	North	ı Boun	d	Sou	ith i	Boun	d	Ea	st B	oun	d		Wes	t Bo	oun	d
	North L -															
	L -	т –	R	L -	·Т	-	R	L -	Т	-	R	L	-	Т		
Movement:	L –	T –	R -	L -	· T		R 	L –	T 		R 	L 	-	Т		R
Movement:	L –	T - Sign	R -	L – St	Т 	- Sign	R 	L –	T 	- oll	R ed	L U	- Jnco	Т 	- 	R
Movement: Control:	L - Stop	T - Sign 0 0	R -	L – St	T 	- Sign	R 	L - Unc	T 	 oll 0	R ed	L U 0	- Jnco	T ntro	- 	R ed
Movement: Control: Lanes:	L - Stor 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	T 	 Sign ! 0 0	R 0	L - Unc 0 0 0	T ontro 1	- oll 0	R ed 0	L U 0	- Inco 0	T ntro 1 23	- 	R ed 0
Movement: 	L - Stor 0 0 0	T - Sign 0 0 0	R - 0	L - St 0 0 0	т .op 1	 Sign ! 0 0	R 0	L - Unc 0 0 0	T ontro 1 25	- oll 0	R ed 0	L U 0	- Jnco 0	T ntro 1 23	- 	R ed 0

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:54:09 Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 1
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 0
 0
 0
 25
 0
 0
 23
 0

 Major Street Volume:48Minor Approach Volume:0 Minor Approach Volume Threshold: 1029 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default ScenarioThu Jun 4, 2015 15:57:20Page 1-1

Scenario Report	

Scenario:	Default	Scenario
Command: Volume: Geometry: Impact Fee: Trip Generation: Trip Distribution: Paths:	Default Default Default Default Default Default Default	Command Volume Geometry Impact Fee Trip Generation Trip Distribution Path
Routes:	Default	
Configuration:	Default	Configuration

Default Sce	enario Thu Jun 4, 201	5 15:57:20	Page 2-1
	Signal Warrant S	ummary Report	
Intersectio	on	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Franc:	isco Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Franc:	isco Drive @ El Dorado Hills B	Yes	555
# 4 Green	Valley Road @ Project Access	No / No	;;; / ;;;
# 5 Cambr:	ia Way @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <
 Initial Vol:
 3
 370
 12
 38
 484
 15
 24
 0
 1
 0
 0

 ApproachDel:
 xxxxxx
 xxxxxx
 27.5
 11.1
 54 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=25] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1001] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=54] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1001] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

are probably more likely to meet one or more of the other volume based

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1

 Initial Vol:
 3 370 12 38 484 15 24 0 1 0 0 54

 Major Street Volume: 922 Minor Approach Volume: 54 Minor Approach Volume: Minor Approach Volume Threshold: 313 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0
 1 0 0 1 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 319 117
 62
 102 222
 6
 2 28 455
 80 60 61

 Major Street Volume:828Minor Approach Volume:485 Minor Approach Volume Threshold: 350 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 1
 0
 0
 0
 677
 2
 0
 1681
 0

 ApproachDel:
 10.7
 xxxxxx
 xxxxxx
 xxxxxx
 xxxxxx
 _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=1] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=2361] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 15:57:20 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Major Street Volume: Minor Approach Volume: 2360 1 Minor Approach Volume Threshold: -11 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 23
 0
 14
 4

 ApproachDel:
 xxxxxx
 8.7
 xxxxxx
 xxxxxx

 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=43] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 15:57:20 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 2
 0
 0
 23
 0
 0
 14
 4

 Major Street Volume:41Minor Approach Volume:2 Minor Approach Volume Threshold: 1071 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 1-1

		Scenario Report
Scenario:	Default	Scenario
Command:	Default	Command
Volume:	Default '	Volume
Geometry:	Default (Geometry
Impact Fee:	Default	Impact Fee
Trip Generation:	Default '	Trip Generation
Trip Distribution:	Default '	Trip Distribution
Paths:	Default :	Path
Routes:	Default 1	Route
Configuration:	Default	Configuration

Default	Scenario Thu Jun 4, 201	5 16:00:10	Page 2-1
	Signal Warrant S	ummary Report	
Intersec	tion	Base Met	Future Met
		[Del / Vol]	[Del / Vol]
# 2 Fra	ncisco Drive @ Cambria Way	No / No	;;; / ;;;
# 3 Fra	ncisco Drive @ El Dorado Hills B	Yes	555
# 4 Gre	en Valley Road @ Project Access	No / No	??? / ???
# 5 Cam	bria Way @ Project Access Drivew	No / No	;;; / ;;;

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-1 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0
 0 0 0 0 0 0 0
 Initial Vol:65881557567201821118191ApproachDel:xxxxxxxxxxxx46.325.1 _____| Approach[eastbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.4] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=31] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ Approach[westbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.8] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=110] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=4][total volume=1394] SUCCEED - Total volume greater than or equal to 800 for intersection with four or more approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

signal warrant (such as the 4-hour or 8-hour warrants).

Thu Jun 4, 2015 16:00:10 Default Scenario Page 3-2 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #2 Francisco Drive @ Cambria Way Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 1 0 0 0 1! 0 0
 0 0 1! 0 0
 0 0 1! 0 0

 Initial Vol:
 6 588 15 57 567 20
 18 2 11 18 1 91

 1253 110 Major Street Volume: Minor Approach Volume: Minor Approach Volume Threshold: 207 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-3 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #3 Francisco Drive @ El Dorado Hills Boulevard Base Volume Alternative: Peak Hour Warrant Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1! 0 0 0 0 1! 0 0
 0 0 1! 0 0 0 0 1! 0 0

 Initial Vol:
 501 188 5 27 87 49 38 76 482 4 59 40

 Major Street Volume: 857 Minor Approach Volume: 596 Minor Approach Volume: Minor Approach Volume Threshold: 338 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-4 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R
 Control:
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 0
 0
 0
 2
 0
 1
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 2
 0
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td
 Initial Vol:
 0
 0
 2
 0
 0
 0
 1814
 2
 0
 1233
 0

 ApproachDel:
 19.5
 xxxxxx
 xxxxx
 xxxxx
 xxxxx
 xxxx
 xxxxx
 xxxx
 xxxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xxx
 xx
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 _____| Approach[northbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=2] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=3051] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-5 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #4 Green Valley Road @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 0
 2
 0

 Initial Vol:
 0
 0
 2
 0
 0
 0
 1814
 2
 0
 1233
 0

 Major Street Volume: 3049 Minor Approach Volume: 2 Minor Approach Volume Threshold: -99 [less than minimum of 100] _____ SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Default Scenario Thu Jun 4, 2015 16:00:10 Page 3-6 _____ _____ Peak Hour Delay Signal Warrant Report Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met Approach:North BoundSouth BoundEast BoundMovement:L - T - RL - T - RL - T - R West Bound L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 6
 0
 0
 25
 0
 23
 4

 ApproachDel:
 xxxxxx
 8.8
 xxxxxx
 xxxxxx
 1
 1

 4 _____| Approach[southbound][lanes=1][control=Stop Sign] Signal Warrant Rule #1: [vehicle-hours=0.0] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=6] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3][total volume=58] FAIL - Total volume less than 650 for intersection with less than four approaches. _____ SIGNAL WARRANT DISCLAIMER This peak hour signal warrant analysis should be considered solely as an

"indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

Thu Jun 4, 2015 16:00:10 Default Scenario Page 3-7 _____ _____ Peak Hour Volume Signal Warrant Report [Urban] Intersection #5 Cambria Way @ Project Access Driveway Base Volume Alternative: Peak Hour Warrant NOT Met -----||-----||------|| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Lanes:
 0
 0
 0
 1
 0
 0
 0
 1
 0

 Initial Vol:
 0
 0
 0
 6
 0
 0
 25
 0
 0
 23
 4

 Major Street Volume:52Minor Approach Volume:6 Minor Approach Volume Threshold: 1008 _____

SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.